Recording Automotive Crash Event Data

Augustus “Chip” Chidester, National Highway Traffic Safety Administration
John Hinch, National Highway Traffic Safety Administration
Thomas C. Mercer, General Motors Corporation
Keith S. Schultz, General Motors Corporation

May 5, 1999

National Transportation Safety Board
Symposium On Recorders
Crash Scene
1914 Car Crash in Scotland

Source: http://www.sol.co.uk/s/scott.wilson/Old_Traffic_DundAcc1914.jpg
The Opportunities Are Vast

- 18,000 Tow-away crashes per day
- Equivalent to about $600 million worth of crash Tests per day (18,000 crashes * $35,000 / test)
- Current total production of crash tests conducted for US vehicles is estimated around 5,000 / year
Background

- Need for real world crash data - crash pulses
- Today - methodology based on observation of post crash vehicle deformation
- Need for more detailed data to define crash conditions (pre-impact conditions, detailed deceleration data)
- Recommendations from NTSB & JPL
• NTSB public forum on air bags and child passenger safety (March 1997)

• NHTSA (H-97-18)
 – “Develop and implement, in conjunction with the domestic and international manufacturers, a plan to gather better information on crash pulses and other crash parameters in actual crashes, utilizing current or augmented sensing and recording devices.”
• 1997 recommendation for NHTSA to work on EDRs
• Study feasibility of installing and obtaining crash data for safety analyses from crash recorders on vehicles

• JPL findings
 – Crash recorders exist already on some vehicles with electronic air bag sensors, but data recorded are determined by the OEMs
 – These recorders could be basis for an evolving data-recording capability that could be expanded to serve other purposes
• Emergency rescues - information could be combined with occupant smart keys to provide critical crash & personal data to paramedics
• Questions of data ownership and data protection would have to be resolved, however
 – Where data ownership concerns arise, consultation with experts in the aviation community regarding use of aircraft flight recorder data is recommended
Potential Uses of Event Data

Category: Improve Vehicle Design/Highway Infrastructure
- **Potential Examples**
 - *vehicle systems*
 - airbag sensing system deployment criteria
 - *highway systems*
 - roadside safety feature design standards

Category: Provide a Basis for Regulatory & Consumer Information Initiatives
- **Potential Examples**
 - offset frontal impact severity
 - average/extreme vehicle decel pulses

Category: Provide Objective Data for Crash Reconstruction
- **Potential Examples**
 - alleged defects & litigation
 - unintended vehicle acceleration
 - crash & airbag deployment sequence

Category: Develop an Objective Driver Behavior Database
- **Potential Examples**
 - pre-crash driver braking/steering
 - belt use
 - vehicle speed
<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th>Vehicle</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre Crash</td>
<td></td>
<td>Skid Marks</td>
<td></td>
</tr>
<tr>
<td>Crash</td>
<td></td>
<td>Calculated Delta-V</td>
<td></td>
</tr>
<tr>
<td>Post Crash</td>
<td>Injury</td>
<td>Collision Damage</td>
<td>Environment after crash</td>
</tr>
<tr>
<td>Pre Crash</td>
<td>Crash</td>
<td>Post Crash</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>Vehicle</td>
<td>Environment</td>
<td></td>
</tr>
<tr>
<td>Belt Use Steering Brake</td>
<td>Speed ABS Other Controls</td>
<td>Conditions During Crash</td>
<td></td>
</tr>
<tr>
<td>Air Bag Data Pre Tensioners</td>
<td>Crash Pulse Delta-V Yaw A/B Activation Time</td>
<td>Location</td>
<td></td>
</tr>
<tr>
<td>ACN (Automatic Collision Notification)</td>
<td>ACN</td>
<td>ACN</td>
<td></td>
</tr>
</tbody>
</table>
GM Airbag Systems
Data Stored

<table>
<thead>
<tr>
<th>Parameter</th>
<th>1990 DERM</th>
<th>1994 SDM</th>
<th>1999 SDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>State of Warning Indicator when event occurred (ON/OFF)</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Length of time the warning lamp was illuminated</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Crash-sensing activation times or sensing criteria met</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Time from vehicle impact to deployment</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Diagnostic Trouble Codes present at the time of the event</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Ignition cycle count at event time</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Maximum Delta-V for near-deployment event</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Delta-V vs. time for frontal airbag deployment event</td>
<td>■</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Time from vehicle impact to time of maximum Delta-V</td>
<td>■</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>State of driver’s seat belt switch</td>
<td></td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Time between near-deploy and deploy event (if within 5 seconds)</td>
<td></td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Passenger's airbag enabled or disabled state</td>
<td></td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Engine speed (5 sec before impact)</td>
<td></td>
<td></td>
<td>★</td>
</tr>
<tr>
<td>Vehicle speed (5 sec before impact)</td>
<td></td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Brake status (5 sec before impact)</td>
<td></td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Throttle position (5 sec before impact)</td>
<td></td>
<td>★</td>
<td>★</td>
</tr>
</tbody>
</table>
1999 EDR Simplified Block Diagram

- Engine Speed Sensor
- Vehicle Speed Sensor
- Brake ON/OFF Sensor
- Throttle Pos Sensor

Pre-impact data

Serial data bus

SDM

Accelerometer

Low-pass Filter

Microcomputer Including EDR
- RAM
- 32k ROM
- 640 EEPROM

Airbags

Driver Seat Belt Sensor

Manual Pass. Airbag Cutoff Sw. And Indicator

Power

Ignition Switch
EDR Data

Delta-V (mph)

Time (msec)
Pre-Impact Data
1999 EDR

Crash Time (sec)

Crash Occurs @ Time = 0

Brake ON
Vehicle Speed
Engine Speed
Throttle Pos
Brake OFF
Accuracy and Resolution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Full Scale</th>
<th>Resolution</th>
<th>Accuracy</th>
<th>How Measured</th>
<th>When Updated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta V</td>
<td>± 55.9 mph</td>
<td>0.4 mph</td>
<td>~ ± 10%</td>
<td>Integrated acceleration</td>
<td>recorded every .010s, calculated every .00125s</td>
</tr>
<tr>
<td>Vehicle speed</td>
<td>158.4 mph</td>
<td>0.6 mph</td>
<td>± 4 %</td>
<td>Magnetic pickup</td>
<td>vehicle speed changes by > 0.1 mph</td>
</tr>
<tr>
<td>Engine Speed</td>
<td>16383 RPM</td>
<td>1/4 RPM</td>
<td>± 1 RPM</td>
<td>Magnetic pickup</td>
<td>RPM changes by ≥ 32 RPM.</td>
</tr>
<tr>
<td>Throttle Position</td>
<td>100% Wide open throttle</td>
<td>0.4 %</td>
<td>± 5%</td>
<td>Rotary potentiometer</td>
<td>Throttle position changes by ≥ 5%.</td>
</tr>
</tbody>
</table>
EDR Uses
SCIs Involving GMs’ EDRs

<table>
<thead>
<tr>
<th>MY - Make - Model</th>
<th>Driver Belted</th>
<th>Delta-V (mph)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998 Chevrolet Malibu</td>
<td>Y N</td>
<td>23 50</td>
<td>Final seat belt determination was "not belted. Severe under-ride.</td>
</tr>
<tr>
<td>1995 Saturn SL</td>
<td>N N</td>
<td>13 16</td>
<td>Very minor damage</td>
</tr>
<tr>
<td>1996 Geo Metro</td>
<td>Y* Y</td>
<td>19 20</td>
<td>*Physical evidence indicated shoulder portion of the belt under the driver's arm</td>
</tr>
<tr>
<td>1995 Saturn</td>
<td>N N</td>
<td>NR 11</td>
<td>Driver stated belt used, no physical evidence</td>
</tr>
<tr>
<td>1996 Oldsmobile 98</td>
<td>Y Y</td>
<td>NR 17</td>
<td>Under-ride - visual of 14-18 mph</td>
</tr>
<tr>
<td>1995 Chevrolet Lumina</td>
<td>N N</td>
<td>12 24</td>
<td>Under-ride, 24 mph @ 150 msec</td>
</tr>
<tr>
<td>1995 Geo Metro</td>
<td>Y Y</td>
<td>14 9</td>
<td>The report writer specified the SDM Delta-V data as more representative of this crash</td>
</tr>
<tr>
<td>1995 Geo Metro</td>
<td>N N</td>
<td>NR 11</td>
<td>Undercarriage impact. Visual estimate of 9-14 mph</td>
</tr>
<tr>
<td>1998 Pont. Grand Prix</td>
<td>Y Y</td>
<td>NR 2</td>
<td>Inadvertent deployment</td>
</tr>
</tbody>
</table>

NR = No Results
Delta-V
- Struck a heavy, parked truck in a severe bumper under-ride impact.
- Such crashes typically generate long crash pulses.
- WINSMASH estimated a Delta-V of 23 mph.
- The investigator noted this Delta-V estimate appeared to be low.
- Data from the on-board recorder indicated a Delta-V of approximately 50 mph.

Belt Use
- Belt use status unsure Investigator.
- EDR was read.
- EDR indicate “Belt Used.”
- EDR was correct.

Chevrolet Malibu
On April 29, 1998, NHTSA staff presented a briefing to the MVSRAC committee. The purpose was to recommend that a working group be formed. MVSRAC members indicated:

- It would be several years before such devices would be widespread enough to give researchers information on crashes.
- Manufacturers were not far along in EDR technology.

A working group was formed, and the MVSRAC Crashworthiness Subcommittee would organize the EDR working group.
MVSRAC WG Representatives

- AAAM
- Blue Bird
- CA DMV
- Chrysler
- FHWA
- Ford
- Navistar
- GM
- NASDPTS
- Honda
- NHTSA
- NTSB
- Private
- Transport Canada
- TRB
- UVA
- VW
- Worcester
Objectives of MVSRAC W.G.

• Define functional and performance requirements for on-board crash data recorders
• Understand technology presently available to meet these requirements
• Develop a set of data definitions
• Discuss the various uses of the data
Objectives (cont’d)

• Discussions of legal and privacy issues
• Historical overview of other agency’s actions related to data collection
Potential Outcomes of the MVSRAC WG

• Technical Report (by end of 2000)
• Recommendations to Full MVSRAC for EDR actions
 – Establish National Data Base for EDR Data
 – Encourage all manufacturers to develop EDR technology
Conclusions

• Potential to Greatly Improve Highway Safety
• Well-Coordinated Efforts will be Needed to Achieve the Results Envisioned by the NTSB
• NHTSA’s MVSRAC Event Data Recorder Working Group will Establish Guidelines for Future On-Board Data Recording Capability
• EDR Data is now being stored in NHTSA’s National Crash Data Bases
The End

[Image of group bending over a car]