APPENDIX D

SUMMARY OF REMARKS
AT THE
AUTOMOBILE COLLISION DATA WORKSHOP

Lawrence Patrick
Wayne State University

January 16, 1975
Mr. Howard Gates
Economics & Science Planning
1200 18th Street
N.W. Washington, D.C. 20036

SUBJECT: ESP Meeting, January 16 & 17, 1975

Dear Mr. Gates:

As requested at the captioned meeting, I am enclosing herewith prints of the slides I used in my presentation together with a brief summary of my remarks. In the interest of brevity, the remarks are presented in outline form.

PREMISE

1. The only valid way to establish safety needs for automobiles is through examination of field data.

2. The only valid way to evaluate the effectiveness of safety measures is through analysis of their effect on accident data.

CONCLUSION

Accident data are essential.

CRITERIA FOR DATA COLLECTION

1. Sufficient data must be obtained for statistical analysis. Collection of accident data is expensive so it must be optimized for the number of variables, depth of study, and type of collision to minimize the cost per accident. The present MDAI studies cost approximately $2500.00 apiece, and include greater detail than is necessary. With modification of the collection procedure accident data in sufficient depth should be available at a cost of under $400.00 per case. Other data should be gathered on a large sample basis in even less detail at a considerably lower cost.

2. Complete injury data must be included in the accident data. Sex, age, weight, height, and general physical condition are all important factors in analyzing accident data. The type and degree of injury of each occupant including the minor bruises and abrasions and going through the severe bone and soft tissue damage are required. It is important to have complete data on the restraint systems used and the interior components of the vehicle that caused the injury.
3. Complete vehicle crash data are essential to permit an estimate of the collision severity. The crash data in addition to the usual photograph should include measurements of vehicle deformation. A standard means of recording deformation of the vehicle would be beneficial.

4. Reference collisions are required to establish severity of the accident from the crash data and deformation measurements. Eventually the reference collisions and deformation data can probably be replaced by a data recorder. The data recorder should be relatively simple and the cost should be low enough to permit installation in all vehicles. A crash severity signature is required which gives crash severity in the most meaningful terms. This does not necessarily require triaxial acceleration time histories. The Barrier Equivalent Velocity that has been used extensively is not necessarily the best measure of severity, but is one that has been used extensively and should continue to be used until a better measure of severity is developed.

DATA ANALYSIS

1. Standardized injury and deformation reporting is essential to keep the results of investigations by different groups in different parts of the country on a uniform basis. The AIS scale and the VDI should be considered for the immediate future and utilized until a better scale is devised.

2. The effect of sex, age, weight, size, position in vehicle, direction of impact, restraint systems etc. should be established. This will permit an accurate judgement to be made of the area of safety improvement that should be stressed.

3. Probability of injury as a function of collision severity is essential. It should be recognized that some individuals are going to be injured severely at low severity clue to inherent weaknesses. Fundamentally, it is necessary to protect the maximum number of people from the maximum number of exposures. From a design standpoint, it is essential to establish an acceptable degree of injury under the most severe collision conditions. It is recommended that the AIS-3 injury be the maximum acceptable injury with no injury as the ultimate goal.

EXAMPLE: WSU-VOLVO STUDY

1. The WSU-VOLVO study was divided into four major divisions as follows:

 a. Accident Investigation - complete injury data including the AIS rating and complete vehicle deformation measurements.
b. Staged Collisions - complete deformation data in terms of impact speed.

c. Simulation Tests - records of injury criteria as a function of simulated speed.

d. Analysis - Injury data related to severity and test data.

The accident investigation was conducted by the Volvo investigation team with special instructions to meet the requirements of this study. The staged collisions included frontal force, barrier, pole, and car to car collision. The collision simulations were made in the laboratory in a modified Volvo automobile with instrumented dummies as the occupants using the same stopping distance and deceleration pulse as measured from the staged collisions.

2. Accident criteria established to minimize the number of variables include:

a. Frontal force collisions only.

b. Belted front seat occupants (one or more).

c. No unbelted rear seat passengers or other heavy objects in the rear seat.

d. No external secondary impact of substantial severity.

3. With these stipulations, a total of 128 accidents were investigated with 169 occupants in a two year period. During this time there were eleven staged collisions at Volvo and 72 simulated tests at Wayne.

4. Figure 1 is a plot of the injury as a function of Barrier Equivalent Velocity with three injury areas for each occupant. As noted from the legend, the data are divided into head, neck, and chest injuries for each occupant with the driver and right front passenger position differentiated. The figures at the bottom of the graph refer to the number of body areas at each velocity for which there were no injuries. It is important to note that AIS-3 injuries were found at velocities ranging from 10 to 53 mph with the major number clustered at about 30 mph.

Figure 2 is a bar graph showing the distribution of injury as a percent of the number of occupants in 10 mph increments. At the 0 to 9 mph level approximately 90% of the occupants had no injury and the remaining 10% sustained only minor injuries. In the 50 to 59 mph range all occupants had some injury with one third having the AIS-1 injury and two thirds having AIS-3 injury. It is obvious that as the BEV increases the injury also increases.
Mr. Howard Gates
Economic & Science Planning
January 20, 1975

Figure 3 is a sketch of the rib cage with rib fractures and sternum fractures illustrated. In the field study all of the rib fractures occurred on the inboard side which is the side which the belt applies the force to the ribs. The fractures have all been put on one side although in the field there were fractures to the driver and passenger and consequently they were on both the left and the right side of the rib cage.

5. The accident investigating team carefully measured the deformation of the vehicle at six different points on the front as shown in Figure 4. A computer program was developed to record the six deformation measurements in graphical form. Figure 5 shows the deformation for the staged barrier collisions. These were all normal frontal force collisions and consequently the deformation is symmetrical. Figure 6 shows the same data obtained from the measuring fixture in the field accident study. It will be noted that in this figure the impacts are to poles and/or asymmetrical impacts which result in a different pattern than the barrier results. It was necessary to interpolate the field data to provide the closest BEV for the analysis. It is felt that the overall barrier equivalent velocity assigned to each collision is considerably more representative of the collision severity than in previous studies.

6. Figure 7 shows the rib fractures for male and female as a function of velocity. It should be noted that the age of the occupant should be included as another variable. However, the figure shows that the female has a greater number of ribs fractured than the male.

7. Figure 8 is a graph of cumulative injury risk as a function of abbreviated injury scale with velocity as a parameter. The data are plotted for the 10 mph increments. The dash lines indicate that the data are extrapolated with insufficient data for an exact definition of the curve. However, the data show a distinct family of curves. Additional data is required to delineate the curves with greater accuracy. The same data are shown in Figure 9 with abbreviated injury as a function of barrier equivalent velocity. This graph permits an estimate of the likelihood of injury in a given frontal force collision.

AMOUNT OF DATA REQUIRED

1. The collection of accident data requires a substantial amount of data with extreme accuracy desirable but not necessary. For example, there is no need to have a collision severity to within plus or minus "one mile per hour". This is especially true since we really don't know what the barrier equivalent velocity means or whether some completely different severity index should be used. With the large number of variables including impact velocity, impact direction, rigidity of vehicle, rigidity of object struck, location of impact on car, occupant location, occupant age, sex, height, weight, physical condition, tolerance
to acceleration environment, posture, vehicle interior design, and restraint systems, it is more important to have a substantial amount of data with reasonable detail rather than a small number of cases that have been investigated to a great depth.

2. With the large number of variables it is necessary to have a large number of recorders in the vehicle population in order to obtain a reasonable number of accidents with the recorders in the car. The most desirable situation is one in which each car manufactured is equipped with a recorder installed at the factory.

CRASH RECORDER REQUIREMENTS

1. The crash recorder should be installed in a large number of vehicles. Consequently, it must be low in cost.

2. The recorder does not have to be ultra-accurate (such as plus and minus one percent on the acceleration and time scale), since the analysis will be based on a large amount of data rather than a small sample which would require the greater accuracy.

3. The crash recorder should be based upon a "severity index" that has yet to be developed depending upon the injury potential to the occupants. Such a recorder could be an integrating accelerometer with electronics to perform necessary operations on the accelerometer output to provide the severity index. Other means that might be satisfactory include fracture of a number of elements in the accelerometer or the deformation of an element in the accelerometer. The exact function to be measured and the method of measuring it has to be developed.

4. The crash recorder should be developed in conjunction with the data analysis group to insure maximum utility from the installation of the recorder.

5. The recorder should be sealed to prevent tampering and to guarantee that when the record is interpreted it has not been damaged prior to being collected by the investigator. It should be designed to give a record for a collision in excess of some predetermined severity such as a 10 mph barrier equivalent or greater. This will avoid the danger of having a recorder in multiple crashes which could confuse the data or give false results. Obviously the recorder must be rugged enough to withstand the collision without damage.

I believe that you or Dr. Goldmuntz requested a copy of my curriculum vitae and list of publications. They are enclosed.

I thoroughly enjoyed the meeting on January 16th and 17th and feel that it was productive in that I learned considerably from it. Hopefully, the goals of the meeting will be achieved. Bob Cromack has the preliminary writeup that we came up with during our working
lunch on Friday. He is going to have it typed up and sent to the rest of us (Brian O’Neill and David Morganstein). We will review it and approve or modify it for final submission.

An invoice for my expenses is enclosed in accordance with our agreement.

It was a pleasure to work with you on this program. If I can be of any further assistance, please don’t hesitate to call on me.

Sincerely,

L. M. Patrick
Professor

LMP:ldd
ENCLOSURE
FIGURE 1: ACCIDENT INJURIES IN TERMS OF AIS AS A FUNCTION OF BARRIER EQUIVALENT VELOCITY WITH THE MOST SEVERE INJURY TO HEAD, NECK, AND CHEST INCLUDED.
FIGURE 2: DISTRIBUTION OF SINGLE MOST SEVERE OCCUPANT INJURY (AIS\sup{3})
NORMALIZED BY CATEGORY FOR EACH VELOCITY INCREMENT
FIG. 3: ALL RIB AND STERNAL FRACTURES (WITH PASSENGER INJURIES TRANSFERRED TO THE DRIVER'S SIDE)
FIGURE 4: DIAGRAM SHOWING MEASUREMENTS TAKEN WITH FRONT END DEFORMATION FIXTURE.
FIGURE 5: HOOD AND BUMPER DEFORMATION FROM STAGED FRONTAL BARRIER COLLISIONS.
FIGURE 6: DEFORMATION DATA FROM EIGHT OF THE ACCIDENT CASES.
FIGURE 7: RIB FRACTURES FOR MALE AND FEMALE OCCUPANTS AS A FUNCTION OF BARRIER EQUIVALENT VELOCITY.
Figure 8: Percent of cumulative injuries, equal to or greater than, a given AIS level for 10 MPH increments.
FIGURE 9: INJURY AS A FUNCTION OF BARRIER EQUIVALENT VELOCITY FOR CUMULATIVE PER CENT OF INJURY
LETTER FROM RICHARD WILSON
GENERAL MOTORS CORPORATION

February 4, 1975
Dr. Lawrence A. Goldmuntz
Economics and Science Planning
1200 18th Street, N.W.
Washington, D.C. 20036

Dear Dr. Goldmuntz:

You are to be complimented on your recent Automobile Collision Data Workshop. The free interchange of ideas from such a wide cross-section of data gatherers and data users should be most useful as you formulate your recommendations to the Office of Technology Assessment. I was happy to participate and hope the following comments and the attached material will add to your study.

GM believes there is a need for better accident data so that the true benefits of safety standards can be assessed along with their cost of implementation. This applies to current standards just as well as it does when considering future rulemaking. The value of better data is to improve vehicle safety and to decrease the risk of making an incorrect decision on a standard. The incorrect decision may result in enacting or failing to rescind a standard which is not cost beneficial, or, on the other hand, rescinding or failing to enact a cost beneficial standard. NHTSA should move ahead only with those standards on which they have sufficient information to support a favorable benefit/cost relationship.

You specifically asked for an estimate of the "potential societal cost of not having better accident data". One way to look at this is to consider that the cumulative cost to the consumer for safety standards to date is estimated to be approximately $245 per car (exclusive of bumper provisions). An additional $250 per car are forecast if proposed new safety standards take effect. This $495 per car total related to current and proposed safety standards (bumper standards would be a further addition) translates to about $5 billion per year if applied to production rates of 10 million cars per year. The need for reliable benefit data against which these costs can be evaluated is urgent. Accident data is one source for such information.

Basic requirements for a better accident data system have been presented before. GM has discussed NADS* and the University of Michigan Highway Safety Research Institute has presented SIR**. Other plans may be

* National Accident Data System - Paper by Terry and Schneider given at GM's June 1973 Automotive Safety Engineering Seminar (copy attached).
** National System for Collecting Multipurpose Accident Data - paper by O'Day given at the June 1974 Experimental Safety Vehicle Conference.
forthcoming from your workshop. While exact data system costs have not been formally worked out, they likely are in the area of 10 to 20 million dollars a year. If better accident data could increase the benefit/cost of safety standards by even a few percent (one percent of the above $5 billion would represent $50 million), the $10 to $20 million government investment per year seems very reasonable.

As a specific example, we estimate the cost of continued use of side guard beams, needed to meet MVSS 214, to be about $10 to $12 per car. Applying this cost to 10 million cars per year, this single item of standard represents a total amount to the consumer of $100 to $120 million per year. And yet, the current state of accident data does not even allow a determination of whether side guard beams have had any benefit or not. Again, $10 to $20 million per year for better data seems a minimum expenditure when viewed as a critical ingredient guiding the public’s investment of billions of dollars in the costs of their cars.

I hope your project will pull together our country’s need in the accident data area. We are convinced there is a need for this type of better decision-making information. I look forward to your final report.

Very truly yours,

R. A. Wilson
Engineer-in-Charge

RAW/clw
Attach.
Field accident data which reflect what is truly happening in the field today are necessary (1) for the automobile industry to evaluate performance and guide future designs and (2) for the NHTSA to evaluate standards and guide future rule making. This type of data system is not available now. The multilevel system recommended by GM to accomplish this would use the expertise already available in many of the NHSTA-Sponsored multidisciplinary accident investigation teams. The system consists of several study areas which include exposure data and levels 1, 2 and 3 accident data. Another requirement of the system would be a central facility which would process the data and make it available to both NHTSA and industry.

On June 12, 1970, at a Data Accident Investigation workshop* in Brussels, Belgium, GM outlined why field accident data is needed by automobile manufacturers. These needs to collect accident data are:

Data Needs
1. Evaluate present safety system%
2. Predict performance of proposed safety systems.
3. Identify problem areas & evaluate solutions on cost/benefit basis.
4. Estimate human tolerances to impact

1. Evaluation of Production Safety Systems

Early accident investigators saw the results of automobile accidents and identified those vehicle components which were producing frequent and severe types of trauma. This early work supported the introduction of items such as the high penetration resistance (HPR) windshield in 1966 and energy absorbing steering columns in 1967. These investigators were able to measure the relatively large performance improvements of those safety systems. More subtle changes in safety performance can be found only by data collection programs that are refined enough to exhibit statistical trends. For example, it is generally agreed that further changes made to the present windshield will result in a smaller improvement in injury reduction compared to that made in 1966. Measuring this potential change in performance will require a sophisticated accident data collection program.

2. Prediction of Proposed Safety Systems

Before implementing any change to safety systems already in the field, the performance of the new safety systems must be predicted. This is the second principle way in which accident data is used.

If the prototype safety system is an improvement on a production item such as the current windshield, then the field data gathered in evaluating the current windshield’s performance is used as the injury pattern baseline. The modified system is then tested in the laboratory to compare its performance with the present system. This laboratory comparison provides data to subjectively project how the new windshield might modify the present injury pattern in the field. In this way, the prediction can be made with some confidence as to the performance in the field of the proposed new system.

If a completely new safety system, such as the air cushion restraint system is proposed, the injury patterns which the new system could somehow influence must be identified. In the case of the air cushion restraint, available accident data might be used to identify the injury patterns in frontal collisions where the air cushion is envisioned to be most useful. The air cushion’s effectiveness, as determined from laboratory tests, could then be used to predict how the present injury patterns could be modified by the introduction of this new restraint system.

3. Identification of Problem Areas and Evacuation of Proposed Solutions on a Cost/Benefit Basis

This identification of problem areas requires an over-view of the total injury picture. The over-view consists of the frequency of particular injuries caused by various components and the severities of these injuries. The areas where the most improvement can and should be made are generally where the highest frequency of most severe injuries occur. A relationship between frequency and severity should indicate the areas of high payoff – those areas where the most good can be done. Once these high payoff areas are identified, the priorities of safety development can be established by cost/benefit studies.

As solutions to the more obvious problem areas are incorporated, the identification of the less obvious problem areas becomes more difficult. To identify the less obvious problem areas will require incorporating even more rigorous data collection programs. It may be possible that a point of diminishing returns will be reached. That is, the time and cost of acquiring even more detailed information may not justify the insignificant amount of improvement made from the data derived. To reach this point is a noble goal indeed.

4. Estimation of Human Tolerances to Impact

The three uses of the field accident data discussed above are specifically aimed at changing the design of the vehicle to reduce the frequency and severity of injuries. A different use of the data is to isolate particular accident situations so that information concerning human tolerances to impact can be generated.

Occasionally, from a large source of accident data, a particular occupant injury in a well-defined automobile accident situation can be attributed to a particular vehicle component. When this infrequent situation arises, and the mechanism of injury is understood, correlation of the accident or “field experiment” with a similar laboratory experiment is attempted. If the “field experiment” can be correlated to the laboratory, the occupant’s impact situation might be quantified and the human tolerance to a particular type of trauma can be estimated. For example, an instrument panel may be identified as the cause of a particular type of head injury. A series of similar instrument panels are impacted in the laboratory until the damage to the instrument panel in the accident case is reproduced. The forces and accelerations to produce the damage in the laboratory are then correlated to the injury produced in the field. In this way, the human tolerance is quantified for this particular type of injury.

These needs remain as valid today as they did three years ago. Further mentioned were the qualities of a good field accident data system:

Data Qualities

1. Rapid feedback
2. Random data sample
3. Current model data
4. Data compatibility

1. Rapid Feedback

A prime goal in automotive safety is the reduction of injuries and deaths due to automobile accidents. The more injuries prevented and lives saved, the better the job is done. Improved safety systems must be incorporated as rapidly as practicable to achieve this goal. An orderly implementation of improved safety systems depends in large measure on the collection and assessment of field accident data. Only after a sufficient amount of statistical and in-depth data is collected can problem areas be identified and further improvements be recommended and implemented.

2. Random Data Sample

Besides the quantity of data gathered, a random sample is essential to insure its quality. Basically, random data is needed so that conclusions aren’t erroneously based on the consequences of a unique accident, or limited number of accidents. False accident and injury patterns can be created by generalizing from a small sample of non-random cases. In the past, most sources of accident data have not been random. Most accident investigations typically have been biased by geography, injury level, damage level, or other accident selection techniques. A valid data sample must be representative of the real world.

3. Current Model Vehicles

Each year safer automobiles are produced. Measuring these advances in safety performance from one year to the next requires a valid data baseline. It should be realized that resources are limited and it would be virtually impossible to collect enough data on the total vehicle population in one year. The most efficient use of resources is to concentrate investigation on the most useful data source - current model vehicles. Of course, as current model data is collected each year, in time, a data bank will be built which will allow a comparison of newer automobiles with trends based on many years.

4. Compatibility of Format

If various data sources are ever to be combined to form large data banks, they must, at least, be in the same basic format. This means that the same information is recorded for each accident and some means of easily combining information from different sources is provided. This is particularly important when in-depth data is being collected because of its inherent complexity.

However, even when it is physically possible to combine data from various sources, it is not always advisable. Each investigator tends to bias his accident selection in some manner such as injury only, rural only, etc. Since the data base for each investigator is usually different, a direct statistical comparison of their data is not advisable.

Again, these characteristics are still desirable today as they were three years ago. There is no known source today which satisfies all of these qualities. The one key quality which bears emphasis is the random data sample. The random data sample criteria implies that the accident cases selected are representative of the national accident experience. This representativeness is critical for sound decision making regarding automobile design and government rule making.
Making decisions with national implications in highway safety using only data from rollover accidents in North Carolina is no more valid than predicting the Gross National Product from monitoring only the construction industry in Utah.

Current Data Status

In the three years since that NATO workshop, some other factors have become obvious regarding the value of accident investigation.

1. The information received not only can be used by the industry for evaluation and direction, but also can apply to Government at all levels for rule making.

2. Variation in the interpretation of current accident data results from two factors:
 a. Different analysis techniques
 b. Different data sources

Variation of results due to the first cause i.e., different analysis techniques, is healthy and promotes various problem solving strategies to be explored and compared. However, differences due to the second source are generally inefficient and result in problems of interpretation. This problem will remain unsolved until the many various data collection efforts are coordinated so that their results can be combined. This combination into a representative data set will then allow, the safety experts to base decisions on a sound technical basis.

These previously stated needs and system characteristics coupled with the conflicting conclusions which result from the uncoordinated data collection activities around the country have led GM to propose what is called a National Accident Data System.

Before outlining the proposal for such a system, one point should be stressed: the system being proposed is not the best system that theoretically could be designed. In fact, it is several steps away from being an optimum design. But it is also many steps closer to an optimum system than anything that exists today. Rather than wait for that perfect system to be implemented, it is imperative that the obvious contradictory nature of various data sources be eliminated now so that valid cost/benefit studies can be used in achieving the goal of reducing injury and death on the highway. Each change made to the system after it is begun should be directed toward the desired optimal system.

The proposal itself tries to incorporate many of the data collection activities that are now in existence while eliminating other unnecessary ones. But the design is primarily dictated by the desire to establish a coordinated National Accident Data System in a relatively short period of time.

DATA COLLECTION

The proposed system involves designating certain geographic regions of the country as sample areas where extensive surveying and profiling will be conducted. This is analogous to taking a Gallup Poll of the nationwide accident experience. Since many of the existing Multidisciplinary Accident Investigation (MDAI) teams sponsored by the NHTSA are somewhat randomly located and because expertise already is available from the teams, we are proposing that selected MDAI teams would form the nucleus for the data collection system. This proposal would convert existing MDAI teams into multi-level programs such that each team has the responsibility of coordinating the gathering of the following levels of information within their specific regions:

1. Exposure data (non-accident)
2. Level 1 accident data
3. Level 11 accident data
4. Special accident studies

Teams which could not reliably supply all these levels of information would not be included in this program.

Exposure Data

Exposure data is profile information on the number and types of people, vehicles and roads in the area. This information is used to define the universe in which the accidents are recorded. Ideally, when all the regions are combined, the exposure should be “representative” of the total United States. Capturing data of this nature allows the various combinations of vehicles/drivers/roads to be described whether in an accident or not. Most of this information is available in existing state operational files. The system should allow specific surveys of additional data to also be conducted. For example, it may be necessary to establish how many miles various age groups drive annually.

Level 1 Accident Data

This level requires collecting a standard police report on all accidents in the region which meet a predetermined severity threshold. An alternate to the standard form would be a form with a common core of information with other elements decided upon by the local jurisdictions. This level of information briefly defines the nature of all accidents in the area. This information, coupled with the exposure data, make possible the computation of accident rates, such as
fatalities/miles driven, accidents/make and model, or accident/driver age. Since the accidents described in this file contain both injury and no-injury cases, computing the probability of an injury occurring is also possible. Definitions or specifications of variables within each region and from region to region must be consistent. This standardization of definitions between regions is imperative, and will provide the program with one of its greatest challenges and one of its greatest advantages over current programs. Emphasis upon the training of the police investigation people is important for this level of data. Definition of what an accident is or of what the various injury levels are must be explicitly stated and uniformly interpreted. Again, flexibility should allow specific, supplemental information to be collected when needed. As an example, the police could be asked to ascertain whether the head restraint was in the “up” or “down” position in a rear end accident.

Level II Accident Data

This level of data would collect information on all accidents in the region which involve a recent model vehicle and an injury. Information on all vehicles involved in the accident would be required. The injury may in fact occur in an older vehicle which impacted the recent model vehicle. This level data has been most valuable from the manufacturer’s viewpoint and has historically been the source of injury causation information. Extending the coverage to include older vehicles would allow comparison of vehicles of different ages. In the past, information of this type collected by GM and other has led to improved vehicle design, examples being HPR windshields and the energy absorbing steering assembly. The information gathered would define the injury severity, the causes of the injury, the accident description, a measure of its severity, and some information relative to the cause of the accident. This information will allow the assessment of new safety systems as they are introduced such as air cushion restraint or starter-interlock webbing systems. Gathering the data on all accident modes and injuries will allow relevant safety evaluation tests to be specified. By combining this data with the Level I Accident Data, it may be possible to evaluate the relative safety performance of various makes and models of vehicles. The current thinking is that the information would be gathered on a modified version of the GM Field Form by investigators working for the MDAI teams. As with the present Field Form, a series of photographs will be required to supplement the information. The form would be expanded to collect information on pre-crash and post-crash phases of the accident which are not presently addressed on our existing form. This part of the system would also allow extra information to be collected on items of specific interest which are not in the GM Field Form. For example, the investigators may be asked to see if the starter interlock system has been defeated or if it had any effect on the occupant’s usage.

Level III Accident Data

These special studies are performed to see why particular problem areas exist. The special studies conducted are based on the Level I or Level (1 information already gathered. For example, a special investigation could be undertaken to more closely examine why a particular class of vehicles for “over-represented” in a particular type of accident. The investigation may find that this type of vehicle is popular for owner modification which could result in unstable handling characteristics.

DATA COMPILATION

The next logical question is what to do with the data after it is collected in its relatively rough form i.e., police reports, GM Field Form, and photographs. To keep the interpretation of raw data consistent from area to area, it is proposed that the data be collected in a central location. At this location, the Level I data would be entered directly into a data bank. The information from the detailed Field Form and photographs in the Level II system would be analyzed and the final information entered into an automated data system. By centralizing this function, the number of subjective judgments are made more or less to be consistent because of the relatively few number of people involved. This situation is similar to that which is now used with the General Motors-MIC program, and has been found to be quite satisfactory. We feel the overall quality of data will be enhanced by increasing the consistency of the data. This central facility would not only provide common data entry and storage facilities, but would also offer a retrieval system for interested data users.

PROGRAM IMPLEMENTATION

Since this program should benefit the industry as well as the Government, it is recommended that joint Government/industry support for the implementation and annual operation of this program be solicited. The industry support could logically be under the auspices of either MVMA or SAE. Specifically, it is felt that the program offers a great opportunity for joint efforts between Government and the industry toward achieving a common goal. There are actions required of both industry and government to implement the proposed program. The program is a national goal and therefore should be funded with Federal monies. However, the
industry should be willing to participate in initiating the program and continue support to the end that the data will be valid and available.

After this program is initiated, data acquisition could begin in less than a year. As shown in Figure 1.

ACTIONS

- Define Desired Sample
- Analyze MDAI Areas
- Capture Local Authorities
- Design Data Collection System
- Select and train MDAI Teams (Level III)
- Train Local Authorities (Level I)
- Train Accident Investigators (Level II)

SUMMARY

Although this system is not a new idea, it is the basic simplicity which is most appealing. The program has been outlined in general terms only, although it has been given much more detailed thought as this general outline was developed. Rather than explore the details at this time, support is being solicited for the overall plan of action in the hope of gaining cooperation from other groups in the detailed planning phases of the program. Again, the payoff from such a system would be high, and achievable in a relatively short period of time.

It is GM’s intent to act as a catalyst in the design and implementation of a National Accident Data System and encourage any of you today to accept this challenge with us.

C. Thomas Terry

C. Thomas Terry is a Section Engineer responsible for the Field Accident Research activity at the Safety Research and Development Laboratory located at the GM Proving Ground.

His responsibilities include the collection and analysis of field accident data

He received a Bachelor of Science Degree in Civil Engineering from Rose Polytechnic Institute, Terre Haute, Indiana, and a Master of Science in Engineering Mechanics from Wayne State University, Detroit, Michigan. Mr. Terry joined General Motors in 1969 and was assigned to the biomechanics area with responsibilities in human simulation and volunteer testing. He was chairman of the SAE Crash Test Dummy Subcommittee during this time.

Mr. Terry then joined the Field Accident Research group in 1970 and was promoted to his present position in 1971. In 1972 he assumed the role of Chairman of the Motor Vehicle Manufacturers Data Collection Co-ordinating Subcommittee.

Among his publications are:

Richard W. Schneider

Richard W. Schneider graduated from Grinnell College where he received the degree of B.A. in 1969 and a Masters Degree of Business Administration in 1971. He joined General Motors Proving Ground in 1971 where he was involved with field accident research. Mr. Schneider is currently senior project engineer with the Safety Research and Development Laboratory at the Proving Ground and active in the area of field accident research. He is a member of Operations Research Society of America.
APPENDIX F

STATISTICAL RATIONALE FOR THE NUMBER OF AUTOMOBILE CRASH RECORDERS PROPOSED FOR PROCUREMENT AND INSTALLATION BY NHTSA

National Highway Traffic Safety Administration

February 5, 1975
(date of receipt)
The statistical justification for the number of crash recorders requested by NHTSA depends primarily on the answers to two general questions.

A. If N crash recorders are installed in passenger cars, what number of crashes will be recorded annually in each category, or "cell" of interest? For example, how many frontal impacts with impact speed (Δv) 30 mph or more will be recorded by the crash recorders?

B. Given the answers to question A, will these numbers provide adequate information on the crash environment. This involves statements about the precision and accuracy of various estimates of rates, proportions or distributions, such as confidence limits or error standard deviations.

Figure 1 summarizes much of the basic factual information needed to answer question A. The figure shows numbers of crashes of various types that would be expected in 1 year from a crash recorder fleet of 100,000 vehicles. The numbers are derived from NHTSA's experience with the current restraint systems study and other accident studies. The estimated recovery rate for crash recorders in accidents is 64 percent; this is a judgment factor on which there are few relevant data.
Figure 1 shows an initial fleet of 100,000 recorders, and it is easy to modify the figure to obtain two other useful sets of figures. If one adds three zeros to each number in the figure, the resulting numbers are estimates of the numbers of crashes occurring with the entire U.S.-automobile population in 1 year. If the numbers are each divided by 1,000, the result is the percent in each category. For example, we can see that about 1.6 percent of the vehicles each year will be involved in towaway crashes from which the recorder is recovered.

Figure 2 illustrates the problem of estimating the cumulative distribution of crash speeds. ("Speed" may refer to any measured value such as \bar{Av}, barrier equivalent velocity (BEV), traveling speed, etc.). The figure shows a "true" distribution function, represented by the solid curve, and an empirical distribution, obtained through the recorder, and represented by the stepped graph. The maximum vertical distance D between the two curves is a random variable. As the number of observations increases, the probability that D will exceed any specified value decreases; i.e., the empirical distribution function approaches the true population distribution function. The following table shows the numbers of observations needed to obtain 80. and 90-percent confidence that the maximum deviation between true and empirical distribution functions does not exceed a specified value.
Figure 1 - Yield from 100,000 Crash Recorders in 1 Year

1. Crash Recorder Fleet 100,000 Vehicles
 2. Police Reported Crashes 8,000
 3. Towaways 2,500
 4. Recorders Recovered 1,600

 5. Frontal Impacts 1,200
 6. AIS=0, 1, 2 Minor Injury 1,135
 6. AIS=3, 4, 5 Severe Injury 48
 6. AIS=6 Fatal Injury 17

 5. Side 200
 5. Rear 150
 5. Rollover 50
Figure 2 Cumulative Distribution of Crash Speeds
Table 1. Number of Observations Required for Specified Confidence That Maximum Deviation Between Empirical and Hypothetical Distribution Does Not Exceed Value Shown

<table>
<thead>
<tr>
<th>Maximum Deviation</th>
<th>Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80 Percent</td>
</tr>
<tr>
<td>.01</td>
<td>11,449</td>
</tr>
<tr>
<td>.02</td>
<td>2,862</td>
</tr>
<tr>
<td>.03</td>
<td>1,272</td>
</tr>
<tr>
<td>.04</td>
<td>716</td>
</tr>
<tr>
<td>.05</td>
<td>458</td>
</tr>
<tr>
<td>.08</td>
<td>179</td>
</tr>
<tr>
<td>.10</td>
<td>115</td>
</tr>
</tbody>
</table>
In estimating the fraction of the crashes that fall into a category of interest (e.g., impact speed over 30 mph), we are concerned with the variability of an observed proportion \(f \) in a sample from a population in which the "true" proportion is \(p \). In large samples (> 25) the observed fraction is distributed normally with mean \(p \) and standard deviation:

\[
\sigma = \sqrt{\frac{p(1-p)}{n}}
\]

where \(n \) is the sample size. The greatest variability occurs when \(p = .5 \), in which case the formula reduces to

\[
\sigma = \frac{1}{2 \sqrt{n}}
\]

So if we specify a probability (confidence level) that the observed results shall not deviate by more than \(D \) from the population proportion \(p \), the required sample size can be estimated. Table 2 shows maximum sample sizes required at two confidence levels.
Table 2. Sample Size Required to Estimate a Proportion with Error Less Than D

<table>
<thead>
<tr>
<th>Maximum Deviation D From Population Proportion</th>
<th>Confidence Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>80 Percent</td>
</tr>
<tr>
<td>.01</td>
<td>4,107</td>
</tr>
<tr>
<td>.02</td>
<td>1,027</td>
</tr>
<tr>
<td>.03</td>
<td>456</td>
</tr>
<tr>
<td>.04</td>
<td>207</td>
</tr>
<tr>
<td>.05</td>
<td>164</td>
</tr>
<tr>
<td>.08</td>
<td>84</td>
</tr>
<tr>
<td>.10</td>
<td>41</td>
</tr>
</tbody>
</table>
The preceding material will now be applied to let us reach some conclusions on how many crash recorders NHTSA should purchase and install.

1. To estimate the proportion of fatal crashes at barrier equivalent velocity below a stated speed, close to a million recorders would be needed. From line (6) of Figure 1, we see that these would yield 170 frontal impact fatalities in a year and 510 in 3 years. This would permit us to state, for example with 80-per cent confidence, “the percent of fatalities in frontal impacts in which BEV exceeds a stated speed is x ± 3 percent” after 3 years of data collection with 1,000,000 recorders. For deaths in crashes other than frontal, the requirements range from at least six times as great for side crashes to at most 24 times as great (i.e., 24,000,000) for rollover crashes. The costs to determine any of these fatality distributions directly with the crash recorder appear to be prohibitive.

 if we use the injury criterion of either fatal or severe injury (AIS > 3), (see line 6, Figure 1) the required numbers reduce by a factor of approximately 4, but are still very high.

2. A more limited goal is to determine the distribution of barrier equivalent speeds in crashes by impact type. This information is an essential input for crashworthiness design. In this case, the distribution of BEV’s for frontal crashes can be determined quite well in a year to about ±0.03 with 100,000 recorders> The error in estimating a single proportion (for example, the fraction of BEV under 30 mph) will be less
than .02 with 80 percent confidence and less than .03 with 90-percent confidence. For side and rear impacts, the BEV distribution can be estimated within ±.80 with 85-percent confidence.

3. Table 1 shows that to reach 80-percent confidence that the distribution of impact speeds observed with a crash recorder is within ±.03 of the “true” distribution function of observed population of crashes, it is necessary to record 1,272 crashes.

The number of recorders needed to be sure of 1,272 recordings depends upon the frequency of the crash type that is of interest. The following table shows the number needed for several crash types of interest. These numbers assure us at the 80-percent confidence level that the maximum error does not exceed ±.03.

<table>
<thead>
<tr>
<th>Impact Direction</th>
<th>Severity Level</th>
<th>1 Year</th>
<th>3 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td>Fatal</td>
<td>7,490,000</td>
<td>2,500,000</td>
</tr>
<tr>
<td>Frontal</td>
<td>AIS > 3</td>
<td>1,960,000</td>
<td>653,000</td>
</tr>
<tr>
<td>Frontal</td>
<td>Towaway</td>
<td>106,000</td>
<td>35,000</td>
</tr>
<tr>
<td>Side</td>
<td>Towaway</td>
<td>636,000</td>
<td>212,000</td>
</tr>
<tr>
<td>Rear</td>
<td>Towaway</td>
<td>849,000</td>
<td>283,000</td>
</tr>
<tr>
<td>Rollover</td>
<td>Towaway</td>
<td>2,546,000</td>
<td>852,000</td>
</tr>
</tbody>
</table>

4. Another goal of the crash recorder program is to “calibrate” other measures of crash severity. Some cheaper, less accurate, even biased measurements may become very useful if their biases are consistent and if we can estimate their error distributions. For example, we might use vehicle deformation more readily if we know how
to associate a speed with each point on the vehicle damage scale and could determine the expected errors. The situation is analogous to using a ruler that is 1 inch too long. If we knew the “true” values corresponding to the erroneous ones given by the ruler, we would be able to use the ruler and make corrections.

To accomplish this calibration it would be necessary to consider separately vehicles whose deformation characteristics differ substantially. A minimum of four groups would be required, corresponding to various classes of vehicles. Additionally, it is necessary to consider the type of object struck: soft or hard, concentrated or distributed. Finally, the calibration needs to be done for at least five points on a speed curve, preferably more. There could be a requirement for up to 80 groups of observations or cells (4x4x5).

With a fleet of 100,000 crash recorders, NHTSA could obtain 1,200 frontal crash impact recordings in a year, which is an average of 1,200 ÷ 80 = 15 per group, and many groups would have much less than 15 observations. Over a period of 3 years the average group size would reach 45. If one assumes a 5 mph standard deviation for the inaccurate measurements, then with 15 measurements the mean for each measured point on a speed curve will be determined with 90-percent confidence to within 1.3 mph. For a 10 mph standard deviation in the measurements to be calibrated, the 90-percent limits will lie 12.5 mph from the mean.
Conclusions:

1. Installing 100,000 recorders would permit a reasonably accurate determination of impact speeds for frontal towaway crashes in a year’s time. Less accurate determinations of side and rear crash speed distributions for towaways would be available by the end of 3 years. These statements rest on the assumptions that:

 (a) The energy crisis and 55 mph speed limit will not reduce the rate of crashes drastically.

 (b) NHTSA can find a way to get a representative sample of crashes.

2. With 100,000 recorders, it will be possible to “calibrate” the various proxy measures used by accident investigators with an acceptable degree of accuracy.

3. The recorder program does help provide a basis for rulemaking. The NHTSA rulemaking organization was quite clear in the requirement for data which only recorders can provide. Attached are 4 charts which state the application of recorder data. The standard writers have consistently provided positive support to the recorder program because of the additional dimensions they provide the technical data base upon which standards are based.
AUTOMOTIVE RECORDER RESEARCH PROGRAM

BASIS FOR RULEMAKING

RECORDER: MEASUREMENT OF VEHICLE CRASH SEVERITY

PLUS: ACTUAL DATA ON INJURIES AND FATALITIES

EQUALS: FIRM UNBIASED RELATIONSHIP BETWEEN CRASH SEVERITY WITH OCCUPANT INJURIES AND FATALITIES
STUDIES INDICATE DISAGREEMENT PRIMARILY AT THE HIGHER SPEEDS WHICH CONSTITUTE THE CRITICAL RANGE FOR CRASH SURVIVABILITY RULEMAKING
RECORDERS SUPPORT PLANS FOR SAFETY STANDARDS

- OCCUPANT COMPARTMENT SYSTEMS
- CRASH ENERGY MGMT SYSTEMS
- HANDLING & STABILITY SYSTEMS
- VISIBILITY SYSTEMS
- DRIVER ENVIRONMENT SYSTEMS

VEHICLE CRASHWORTHINESS SYSTEMS

TOTAL VEHICLE SYSTEM

--- NOT SUPPORTED BY RECORDERS ---
AUTOMOTIVE RECORDER RESEARCH PROGRAM

RECORDER AND TITLE II

AUTOMOBILE CONSUMER INFORMATION STUDY

PART B. CONDUCT A COMPREHENSIVE STUDY AND INVESTIGATION OF THE
DEGREE OF CRASHWORTHINESS OF PASSENGER VEHICLES

RECORDERS RESEARCH COULD SUPPORT THIS EFFORT DIRECTLY BY:

- PROVIDING CURRENT DATA ON SEVERAL VEHICLE MODELS
- CONFIRMING STUDY RESULTS OVER SEVERAL YEARS
APPENDIX G

CRASH RECORDERS

AND

ALTERNATE METHODS OF DEFINING CRASH SEVERITY

James O'Day
HIGHWAY SAFETY RESEARCH INSTITUTE
University of Michigan

February 8, 1975
(date of receipt)
Crash Recorders and Alternative Methods of Defining Crash Severity
James O'Day, Highway Safety Research Institute, university of Michigan
Received February 8, 1975

Precise and representative data on highway crashes in the United States have potential value in enactment of standards, design of new vehicles, and in the evaluation of recent safety improvements. Accident data collected to date have been intended to serve many purposes, and one of the consequences of such a multipurpose activity is that it may not solve any specific problem as well or as economically as would an experiment designed specifically for one purpose.

One of the measures desired by many concerning the U.S. fatal accident population is the cumulative distribution of fatalities by crash severity. This has frequently been put in the form shown in Figure 1 with the abscissa being a barrier equivalent speed. It is clear that if we knew the exact crash speed (defined in an understandable and meaningful way) for each fatal crash in the U.S. for, say, one calendar year, the curve plotted from that data would precisely define the population. If we could sample randomly within the same population we could define this curve with a degree of precision which depended on the sample size.

The crash recorders which have been proposed for installation are, of course, not capable of infinite precision nor do they necessarily report the barrier equivalent speed used in the wording of the standard. The test sequences in controlled crash tests reported indicate a 95% error of less than 2 miles per hour in the derived velocity change (ΔV). The sample size required to achieve a precision in the vertical scale to that in the horizontal scale may be computed from a knowledge of the slope using the Kolmogorov-Smirnov test. For large numbers of cases ($N > 100$) the error in percent (95% bound) may be computed from:

$$\text{Error}_{95\%} = \frac{136\%}{\sqrt{N}}$$
For a 2 mph error in ΔV, and a slope of the distribution of approximately 2.5 (percent/mph) the required sample size would be 740 cases. There would be some gain, of course, in an infinite sample; but a more usual practice would be to define the sample size as above so as to increase the total error only by the square root of two.

SAMPLING CONSIDERATIONS: “

In order for the data for a sample to truly represent the national population, the sample must be properly drawn. If there is a bias in the sample, the output will not be representative. For example, if the mean age of the fatal occupants in the sample were ten years older than the mean age in the U.S. vehicle fatal population--and with the assumption that 10 years of age were equivalent to 5 miles per hour in fatality probability, the curve of Figure 1 would exhibit a bias of the order of 12.5% in a downward direction. There are, of course, a number of other possible biasing factors. If all cars in the sampled group were full size (and the total population contained a large proportion of small cars) the distribution would be affected in the opposite direction.

The biases given as examples here are estimates for illustration only, but they are not unreasonable. To get the true representation one must either sample in such a way as to eliminate the biases (e.g., random sampling) or collect enough additional information to adjust the data to correct for unwanted bias.

NUMBER OF INSTALLATIONS NECESSARY FOR 740 FATAL CASES

There are a number of ways of computing the number of installations necessary to compile 740 fatal crashes over some period of time. A simple one will be used here. With approximately 100,000,000 passenger cars in the U.S. and about 40,000 in-car fatalities per year, only one in 2500 passenger cars would have a fatality in it in a year. 740 fatalities, then, would require
1,865,000 installations. If a three year period were acceptable this reduces to approximately 622,000 installations. If a larger error were acceptable (say twice as large), we no longer need 740 fatalities but only 1/4 that number--and the sample could be further reduced to 155,000. So in three years with 155,000 installations there is a potential for defining the desired cumulative curve with a precision on the order of ± 10%. The various options are shown in graphical form in Figure 2.

DISCUSSION

The statistical considerations above are based on a precise and complete sample. The mechanics of achieving this are not trivial. Placing a number of recorders in a sample of new cars biases the sample against older cars in the general population. And if these new cars were then distributed to the general population a high percentage of recovery would be difficult if not unlikely.

Placing the devices in a fleet (for example by agreement with an insurance company) should increase the probability of recovery--perhaps to a very high value. But this same action is likely to result in a non-representative sample in terms of age, sex, or car size. Adjusting such data to draw inferences to the national population is a questionable practice.

ALTERNATIVES

A number of crash severity measures can be viewed as alternatives to the crash recorder. None have the advantage of producing a direct acceleration-time trace during impact. But most are applicable in principle to all cars. These include the CDC (Collision Deformation Classification) --a newer version of the VDI (Vehicle Damage Index), the SMAC computer programs developed by the CALSPAN Corporation, comparison of detailed crush measure-
ments on accident involved vehicles with results of instrumented crash tests (as described by Campbell in SAE paper 740565) or by Patrick (in an analysis of Volvo crashes). In addition, the TAD scale as applied by several police agencies is a crude measure of crash severity with the potential for relatively universal employment. Each of these will be discussed briefly below.

The CDC (or VDI)

The CDC was developed as a means of recording crash damage in a simple codable form. It consists of 6 elements—the clock direction of impact, four letter codes indicating the location of the damage (vertically and horizontally) and the general nature of the object struck, and a numeric code (1 through 7) indicating the extent of deformation. An experiment conducted by Cromack at Southwest Research Institute, and reported in an SAE paper, indicates that the CDC as presently defined can, in general, be assigned consistently by a trained investigator. The CDC, however, is not directly convertible into a measure of the crash dynamics because it depends in part on the structural characteristics of the particular car under investigation. Further, it was not developed primarily as a substitute for a measurement of the deceleration characteristics of the crashed vehicle, but rather as a simple codable record of crash damage.

The data elements contained in the CDC, however, when related to a knowledge of the vehicle structure (and perhaps other information about the crash circumstances) could permit a computation of some of the crash dynamics. An experiment could be conducted (largely with existing data) to define the ability of the CDC to predict much of the output desired from crash recorders. If an initial experiment looks promising, a large number of crash recorders in vehicles which are also measured with a CDC could lead to either (1) a calibrated CDC, (2) a redefined CDC which is more useful in the context of defining crash dynamics, or (3) both.

The CDC has the advantage that it can be applied to any accident vehicle after the crash without benefit of additional...
instrumentation, and thereby reducing the problem of sample selection. It has the disadvantage, at present, that its capabilities for providing a measure of crash dynamics are not well known, and that these capabilities must depend on better knowledge of vehicle structure than is generally available in the literature.

The SMAC Programs

The MAC development is intended to provide computer assistance to the reconstruction of a traffic accident. The method involves inputting certain observational and factual data into the computer, and iterating a solution which best fits the final rest positions of the vehicles involved. The iterative computer programs can be run from data acquired with a special observational tool (the SMAC van) or can be run with data taken by manual methods. In the latter instance, in particular, the technique should be applicable to a large number of collision analyses.

The present SMAC programs are limited to the ground plane, and, as a result, are not able to handle certain odd collision configurations—such as rollovers, or vehicles running down an embankment. To the best of my knowledge the SMAC program output has not been compared directly with crash recordings, although from some of the remakers at the recent conference I would assume that NHTSA has either started to make such comparisons or has done some. Crash recordings have been used to compute A_V. This output of the SMAC programs has been validated to some extent.

In addition to the ground plane limitation, these programs are also limited by the accuracy of input data on the structural characteristics of the vehicle. However, the capability exists for removing these deficiencies. The problem of this point seems to be one of choosing the optimum tradeoff of input data requirements and modeling sophistication versus the detail and accuracy of the resulting output.
ments on accident involved vehicles with results of instrumented crash tests (as described by Campbell in SAE paper 740565) or by Patrick (in an analysis of Volvo crashes). In addition, the TAD scale as applied by several police agencies is a crude measure of crash severity with the potential for relatively Universal employment. Each of these will be discussed briefly below.

The CDC (or VDI)

The CDC was developed as a means of recording crash damage in a simple codable form. It consists of 6 elements--the clock direction of impact, four letter codes indicating the location of the damage (vertically and horizontally) and the general nature of the object struck, and a numeric code (1 through 7) indicating the extent of deformation. An experiment conducted by Cromack at Southwest Research Institute, and reported in an SAE paper, indicates that the CDC as presently defined can, in general, be assigned consistently by a trained investigator. The CDC, however, is not directly convertible into a measure of the crash dynamics because it depends in part on the structural characteristics of the particular car under investigation. Further, it was not developed primarily as a substitute for a measurement of the deceleration characteristics of the crashed vehicle, but rather as a simple codable record of crash damage.

The data elements contained in the CDC, however, when related to a knowledge of the vehicle structure (and perhaps other information about the crash circumstances) could permit a computation of some of the crash dynamics. An experiment could be conducted (largely with existing data) to define the ability of the CDC to predict much of the output desired from crash recorders. If an initial experiment looks promising) a large number of crash recorders in vehicles which are also measured with a CDC could lead to either (1) a calibrated CDC, (2) a redefined CDC which is more useful in the context of defining crash dynamics, or (3) both.

The CDC has the advantage that it can be applied to any accident vehicle after the crash without benefit of additional
instrumentation, and thereby reducing the problem of sample selection. It has the disadvantage, at present, that its capabilities for providing a measure of crash dynamics are not well known, and that these capabilities must depend on better knowledge of vehicle structure than is generally available in the literature.

The SMAC Programs

The SMAC development is intended to provide computer assistance to the reconstruction of a traffic accident. The method involves inputting certain observational and factual data into the computer, and iterating a solution which best fits the final rest positions of the vehicles involved. The iterative computer programs can be run from data acquired with a special observational tool (the SMAC van) or can be run with data taken by manual methods. In the latter instance, in particular, the technique should be applicable to a large number of collision analyses.

The present SMAC programs are limited to the ground plane, and, as a result, are not able to handle certain odd collision configurations—such as rollovers, or vehicles running down an embankment. To the best of my knowledge the SMAC program output has not been compared directly with crash recordings, although from some of the remakers at the recent conference I would assume that NHTSA has either started to make such comparisons or has done some. Crash recordings have been used to compute AV. This output of the SMAC programs has been validated to some extent.

In addition to the ground plane limitation, these programs are also limited by the accuracy of input data on the structural characteristics of the vehicle. However, the capability exists for removing these deficiencies. The problem of this point seems to be one of choosing the optimum tradeoff of input data requirements and modeling sophistication versus the detail and accuracy of the resulting output.
Figure 1: Crash Severity vs. Cumulative Fatality %.
Figure 2: Sample size required for a given 95% error bound for 1, 2, and 3 year programs.
APPENDIX H

ADEQUACY AND LIMITATIONS OF CURRENT DATA SYSTEMS

Marie D. Eldridge
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION

January 16, 1975
In the very short time available to me this morning, I'm going to try to give you some highlights about the capabilities and limitations of our current data systems. I will also try to indicate where we see improvements within the near future.

However, before talking about the capabilities or the limitations, we really need to ask “capabilities or limitations for what?” So let's briefly talk about the objectives of our accident data systems.

First, we have to classify and count accidents. We need to determine the frequencies of accidents and classify them by their causal mechanisms, by their injury-producing potentials.

Second, we need adequate measurements of accident consequences, injuries, property damage or broader measures such as societal costs, a much neglected area and subject to great controversy but still one on which ultimately our decisions have to rest.

Third, we need to be able to describe, or model, crash injury mechanisms, that is, to relate the causal mechanisms and injury-producing potential to the actual occurrence of crash injury. This is particularly important in predicting the effects of proposed safety countermeasures. We have to
describe functional relationships between numerous factors which at present are considered separately. All of these things that I have mentioned enter into the process of determining the efficacy and the benefits of existing or proposed safety measures.

Let us consider the criteria by which we should assess our crash data collection systems. It is my view that a comprehensive approach and a comprehensive consideration of all the data requirements that combine to give us the needed information is essential. It just won't do to get very high accuracy in estimating speeds if at the same time the sample of accidents for which we obtain this information cannot be used to generalize and cannot provide us with the proper support for a rule that will apply to the whole country. High accuracy in one part of the data system can easily be nullified by weakness in another and, to quote an old saying there is no need to put a micrometer on the end of the yardstick.

View Graph II

I have listed in this view graph some of the criteria that we may use in assessing crash data systems. There are many ways of doing this but this may help provide a framework for discussing our present systems.

First of all, there is the quality of the data. We are concerned with its representativeness and in our ability to generalize from it to a national crash population. A sample that contains only new cars or only auto fleets is not representative. Frequently, we may have a situation in which sample populations as defined are representative, but in fact, because of missing data or non-returns, we don’t get an unbiased sample.
A second criterion is **accuracy** of information. One of the reasons we are here today is the inaccuracy of certain information that we are now getting in crashes, namely the various speed parameters.

A third criterion is the ability of the system to be **responsive** and **timely**. The data need to be collected and processed quickly enough that the information is available before the decision has to be made. The sample sizes have to be large enough that we can have confidence in the decisions based on the results. At the same time we have to concern ourselves with costs and make tradeoffs between costs and precision. Next there is the breadth or extensiveness of coverage of the information provided by the system in the many parts of our highway safety information matrix. And last but not least the cost efficiency.

View Graph III

If we had a great deal of time we could consider all this at the data item level or individual field level, but even to cover this matrix in any detail will have to be left for possible discussion later in the conference. I will simply mention that under exposure items we have the characteristics of the vehicle occupants and the amounts of driving by various driver types, their characteristics, licensing, training and so on. We have under vehicle exposure the counts of vehicles by type, travel amounts, their conditions, size, etc. The
environmental exposure includes such things as traffic density, speed limits, highway types, design and so on. We could go down this matrix cell by cell and fill in the types of things that need to be considered.

The final and very difficult quality has to do with the cost-efficiency of the data systems. When a decision involves a high cost or an extreme inconvenience, a great deal of effort will generally have to go into the data collection and analysis. However, we also wish to keep our data collection efficient in the sense of not collecting information for which there is no need or employing personnel or equipment more skilled or more accurate than is really necessary.

IV. Now let us turn to the capabilities of some of our current data collection systems. Basically, we have two types of systems. The first is based primarily on the state or local traffic and related records systems. The second type involves special investigative work. The state records are kept primarily for purposes other than safety analysis. However, we utilize their records for the Fatal Accident Reporting System, which is essentially a census or 100 percent sample of fatal motor vehicle accidents and for the planned National Accident Reporting System, which will be a probability sample of all accidents, of a given threshold. The accuracy of the information provided through the State traffic record systems varies of course. In some areas of particular interest to us it is quite poor. Speed causal factors and restraint systems usage, for example, may be misreported or unreported frequently. Timeliness is generally not a problem. It usually takes only a few months before an accident is in the file and therefore accessible to us. As far as the
quantity of information is concerned, the State Traffic Record Systems are likely to provide us with a large number of cases for the more frequent types of accidents and the items of highest interest, but it is surprising how often in other circumstances we run out of data. The most obvious example is in making comparisons between makes and models of cars. When we get to some types of vehicles that are not on the road in large numbers, we have a very hard time collecting enough accidents to have a useful sample. The breadth of the information provided is generally not adequate. Impact speed for example is reported only in one State; traveling speed in about half the States and not for all accidents even in those States. Restraint system usage is not reported in most States and in many where it is reported, it is not reported for uninjured occupants. Injury information and causal factors are sketchy. Post crash information, societal cost and property damage are usually not in the file.

It has been generally recognized that we can not obtain adequate information to support the standards by relying solely on these basic records oriented data systems. The second type of accident data collection system - those in which specific data collection efforts are sponsored or paid for by either the Federal Government or some other interested organization in the safety field such as MVMA or the Insurance Institute for Highway Safety. In these systems the investigation is likely to be carried out wholly or in part by professional accident investigators, resulting in substantially more extensive information. NHTSA has under way three types of sponsored studies.
First is the Multidisciplinary Accident Investigation teams. These teams do both on-scene and off-scene in-depth investigations. Teams have been performing clinical in-depth studies of selected accidents in the U.S., primarily on new cars, since 1969. The representativeness of the sample that has been produced up to this time is poor. Different teams have been covering accidents most relevant to their special interest. That situation is gradually changing. The accuracy is generally good. Nevertheless, there is considerable room for improvement. We have no capability for getting a time history of the crash forces and accompanying accelerations except through computer simulation such as the SMAC program. At present we have about 6,000 MDAI cases in the file. Many of these were not the result of on-scene investigation. There is detail on most aspects of the accident with the exception of exposure. As a system for producing statistical information needed for supporting our safety standards, the on-scene in-depth investigations cannot be regarded as cost effective. The average cost per case is about $2,000. The cost decreases to about $800 per in-depth case if the on-scene investigation requirement is eliminated. This does reduce the accuracy of reconstruction of the accident and of course affects the estimate of speed.

At a somewhat lower level of detail NHTSA has developed a system in conjunction with MNA to collect a probability sample of tow-away involvements of new cars in five selected regions of the country primarily for the purpose of evaluating active and passive restraint systems.
assembled from the police report, a doctor’s report, photographs, a brief vehicle investigation, and driver interviews performed by field technicians. Data items collected are restricted to those needed/statistical analysis of restraint systems effectiveness. This is an example of what we may term a Level II study. We expect to make national estimates based on post stratification. The accuracy of the information in the selected data items' should be good, nearly as good as what comes from the multi-disciplinary in-depth investigations. The quantity will be adequate to match the needs for estimating safety belt effectiveness. Because of the small numbers it is not likely to give us what we need for estimating air cushion effectiveness, very soon. As far as the breadth of the file is concerned, it is designed for calculation of crash injury rates and evaluation of restraint systems effectiveness. It does not address exposure or accident causation. Speeds and occupant contact points are not determined. The cost is around $100 per case.

A third type of sponsored system is basically a bilevel investigation or one in which there is a supplementary investigation carried out by police with NHTSA or other funds added to take care of added costs. We have under development a system for sampling pedestrian and bicyclist accidents in several hundred localities. The system is designed to answer questions at the level of detail that we
nced to determine gross behavior and provide some good input for counter-
measures. The data to be collected is primarily concerned with the nature
and location of pedestrian and cyclist accidents as well as certain other
items affecting visibility which would not normally be collected in the
state accident reporting system. The cost per case is expected to be high
primarily because of the relative rarity of pedestrian and bicyclist accidents
and because in order to get an adequate probability sample that will properly
represent rural areas, it is necessary to include localities with a very
low frequency of accidents. The set-up time in preparing to get the
supplemental investigations done in small localities is the same as it is
in large localities, but the data rate is low and the total cost is
increased disproportionately.

As we look ahead to potential improvement in the capabilities of our
current systems that may be in sight we are really moving in two directions.
The first is to create a national accident sampling system based on a
probability sample. We have a contract under way with the Highway Safety
Research Institute at Ann Arbor to help develop this system that will
include some of the current investigative efforts but provide for sufficient.
control of the selection of accidents that we will get a sample from which
we can generalize to national crash populations.

The second area in which we anticipate improvements is in determining
-crash dynamics. These efforts, are of courses of paramount importance to
this workshop. The work with the crash recorder is being covered by my
colleague, Lynn Bradford. The other approach, SMAC, the computer simulation
of the accident dynamics will be dealt with by our representatives from
Calspan but I would like to say a few words about our experience with it.
This program uses vehicle rest positions and impact damage to calculate impact velocities, the velocity change during the crash, acceleration pulse and predicted damage. The goal is to reconstruct the accident crash dynamics in sufficient detail that inputs needed by our standards makers are available. The use of the SMAC program may permit us to get, at a reasonable cost, an adequate representative sample of crashes once our national accident sampling program is up and running. However, it should be pointed out that the crash recorder is clearly a very valuable tool in developing necessary refinements to the SMAC program. Ideally, and this is IF a moderate size "if", the crash recorder and the SMAC work hand in hand well enough, we can succeed in reducing considerably the numbers of crash recorders required down stream. Precise calibration of the SMAC program will enable us to use Level 2 data for crash dynamics at a reasonable cost. Currently the cost per case, using the SMAC program is $150.

In the short time available to me I have had to gloss over lightly much of the work related to crash data. Three members of my staff are here to provide detailed back-up and to join in any subsequent discussion of these points. They are Don Mela, Dr. Charles Kahane and Dr. Charles Moffatt. Before finishing these very brief remarks, I want to repeat a point I made earlier. We need to consider all relevant aspects of the data systems in a comprehensive fashion before making decisions on any of them separately. While we may not be able to devote that amount of detail to all aspects of the data systems in this conference I think that at least the major aspects should be considered before coming to any conclusions or decisions.
OBJECTIVES OF ACCIDENT DATA SYSTEMS

CLASSIFY AND COUNT ACCIDENTS

MEASURE ACCIDENT CONSEQUENCES

DESCRIBE CRASH INJURY MECHANISMS
CRASH DATA SYSTEMS CRITERIA

QUALITY
 Representativeness
 Accuracy
 Recency
 Responsiveness to Ad Hoc Demands

QUANTITY
 Precision
 Costs

BREADTH

COST-EFFICIENCY
DATA BREADTH

<table>
<thead>
<tr>
<th></th>
<th>HUMAN</th>
<th>VEHICLE</th>
<th>ENVIRONMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPOSURE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAUSAL FACTORS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRASH EVENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONSEQUENCES</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CURRENT DATA COLLECTION SYSTEMS

A. STATE/LOCAL RECORDS SYSTEMS
 1. FATAL ACCIDENT REPORTING SYSTEM (FARS)
 2. NATIONAL ACCIDENT REPORTING SYSTEM (NAI)

B. INVESTIGATIVE FILES - SPONSORED STUDIES
 1. MULTIDISCIPLINARY ACCIDENT INVESTIGATION (MDAI)
 2. RERAINT SYSTEMS STUDY
 3. BI-LEVEL STUDIES

NEW AREAS

1. NATIONAL ACCIDENT SAMPLING SYSTEM

2. MEASUREMENT OF ACCIDENT DYNAMICS
APPENDIX I

A DISCUSSION OF DATA GATHERING SYSTEMS

Edwin A. Kidd
CALSPAN CORPORATION

January 16 & 17, 1975
INTRODUCTION

A data sampling plan that provides an accident data file that is representative of the national population is important. A system for data processing, storage and retrieval to allow early determination of trends in accident, injury and fatality frequencies is essential. But the most critical problems are those concerned with the collection of consistent, coherent data on individual accident sequences with a volume far exceeding that now available.

For too long, those concerned with accident studies of the effects of safety standards already in force have had to make do with either too small samples of reasonably good data or relatively large samples of data whose content is inadequate for the purpose. In the first category is the data bank (and “bank” is too grandiose a term) that has resulted from the individual federal teams of multidisciplinary, professional investigators. These teams can serve useful purposes in special studies, in discovery of problems that would otherwise go undetected and, particularly, in the area of accident causation. By their very nature, they cannot provide a sufficiently large data sample relevant to the implementation of standards aimed at injury and fatality reduction without excessive expenditure of funds.

In the second category are the presently available state data banks of relatively low content data obtained through the use of routine police and driver reporting. These data have been valuable in demographic studies, in the broad-look definition of trends and in statements concerning the magnitude of the overall problem, primarily in fatality frequency. In most cases, such data is totally inadequate in content and precision and, despite the relatively large numbers available at relatively low cost, cannot adequately define injury and fatality reduction resulting from standards implementation.
There is a third category of data collection systems that has evolved over the past few years that lies between the very detailed team approach and the routine police reporting as established independently by the states. The potential exists with this multi-level approach at selected centers around the country (present examples include Calspan in New York, HSRI in Michigan, and HSRC in North Carolina) for a combined data bank that would be a major step toward the attainment of a greatly increased sample size with, and most important, accurate individual accident data with the content required for the purpose.

Proper utilization of the potential of these data centers can be realized only if investigator and accident reconstruction aids are implemented that will allow the police to obtain the necessary information with orders of magnitude improvement in accuracy. Local and state police already have the charter to investigate accidents. There are no unsurmountable problems in providing them with the new tools that have been developed for collecting the data that would be the basis for a national data bank sufficient for NHTSA needs in surveillance and effectiveness studies.

Data Requirements

The list of specific data elements in each accident that are deemed to be essential can hardly ever be complete for the serious analyst. However, the routine and continuous collection of accident data can be tedious, time consuming and costly. Every effort must be made to keep the data requirements to a sufficient set commensurate with the need.

Such sets have been defined a number of times for various ongoing studies. The one presented in Figure 1 is stated in somewhat general terms as it is required, in this instance, primarily for the comparison of data gathering techniques.
<table>
<thead>
<tr>
<th>DESCRIPTION OF</th>
<th>INDICATION OF DETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL ACCIDENT INFORMATION</td>
<td>SINGLE OR MULTIVEHICLE, RURAL OR URBAN,</td>
</tr>
<tr>
<td></td>
<td>HIGHWAY CATEGORY, PROPERTY DAMAGE ONLY OR</td>
</tr>
<tr>
<td></td>
<td>INJURY, OBJECT STRUCK, OVERALL SCENE</td>
</tr>
<tr>
<td></td>
<td>DESCRIPTION, ROAD SURFACE, AMBIENT CONDITIONS</td>
</tr>
<tr>
<td>SPECIFIC VEHICLE INFORMATION</td>
<td>MAKE, MODEL, VIN, IMPACT DIRECTION AND</td>
</tr>
<tr>
<td></td>
<td>DEFORMATION (VDI OR IMPROVED EQUIVALENT),</td>
</tr>
<tr>
<td></td>
<td>AVAILABLE RESTRAINT SYSTEM, LOADED WEIGHT,</td>
</tr>
<tr>
<td></td>
<td>TIRES, INOPERATIVE SYSTEMS PRIOR AND AFTER IMPACT</td>
</tr>
<tr>
<td>OCCUPANT INFORMATION</td>
<td>SEX, AGE, HEIGHT AND WEIGHT, INJURY (MEDICAL REPORT),</td>
</tr>
<tr>
<td></td>
<td>SEATED LOCATION, USE OF RESTRAINT SYSTEM</td>
</tr>
<tr>
<td>DRIVER INFORMATION</td>
<td>DETAILS AS IN OCCUPANT ABOVE PLUS DRIVING</td>
</tr>
<tr>
<td></td>
<td>EXPERIENCE, TRAINING, CONVICTIONS, PHYSIOLOGICAL</td>
</tr>
<tr>
<td></td>
<td>CONDITION, PSYCHOLOGICAL INDICATIONS, ACTIONS</td>
</tr>
<tr>
<td></td>
<td>PRIOR TO AND DURING ACCIDENT SEQUENCE</td>
</tr>
<tr>
<td>IMPACT ENVIRONMENT</td>
<td>SPEED AT IMPACT, RESULTANT SPEED CHANGE</td>
</tr>
<tr>
<td></td>
<td>TIME HISTORY, COMPARTMENT DECELERATION</td>
</tr>
</tbody>
</table>

Figure 1 ACCIDENT DATA REQUIREMENTS
Even this rather simplified listing appears formidable. However, to some degree each of these elements or approximations thereof are being obtained, by one means or another, by some of the present ongoing programs. There is no element in the outline presented in Figure 1 that is not germane to existing standards. If we settle for a system that provides accurate information less than this and/or only for a quantity of a few hundred or even a few thousand cases, NHTSA cannot do the job it has been directed to do.

Definition of the total number of accident cases required annually for an adequate national data bank can be made if (1) the questions to be asked of the system can be identified both for the present and future; (2) the accuracy with which the particular data elements can be measured is known or can be appropriately approximated; and (3) the statistical analysis techniques to be employed can be agreed upon. This is not meant to imply that such analyses and decisions should not be made. However, there are no statistical procedures that can adequately overcome the past and current inaccuracies with which such extremely important data elements as impact speed and speed change have been reported if they have been reported at all.

There will need to be a parallel effort of statistical analyses to indicate what questions can be addressed with acceptable statistical significance as a function of particular sample sizes along with the determination of the funds that can be made available. The financial impact of standards on the consumer has been and will be considerable — billions of dollars annually. Figure 2 presents an average cost per car for the FMVSS to date based upon individual automobile manufacturer’s data. It seems prudent to schedule funding for the primary surveillance effort — accident data collection — commensurate with the far reaching decisions that depend upon such data.
Figure 2 AVERAGE COST IMPACT OF FMVSS ON AUTOMOBILE PRICE
Data Gathering Techniques

In order to obtain the data required on each accident, every accident analyst would gladly utilize whatever data gathering techniques are available. Ideally, crash recorder information, police and driver reports, intensive investigation team reports and on-scene reconstructions of the accident through computer aids to investigators would all be gratefully accepted by every serious analyst for each accident. In fact, no analyst would refuse any available high speed photographic coverage (in color, of course).

Obviously, it is neither practical nor essential that all of these systems be provided for the achievement of the basic national data bank. It has already been stated that the intensive investigation teams may have other purposes but cannot provide the data in the quantity required. It has also been noted that existing state data, comprised of merged police report, vehicle registration, and driver licensing files do not provide the content required for the evaluation of safety standards.

Crash Recorders

Crash recorders can only provide a portion of the desired information as a supplement to continuous accident investigations. At best, a recorder can provide only the information outlined in Figure 1 under "Impact Environment" plus driver control actions during the accident sequence and an identification of the vehicle in which it is installed. Despite the fact that the information a crash recorder is designed to obtain is the impact environment, and that this is the data now totally lacking or sadly inaccurate, a detailed accident investigation would still be required to provide the essential general accident, specific vehicle (including the other vehicle) and occupant and driver information. Thus, the overall cost of an accident investigation would include essentially the present costs plus those associated with the provision of crash recorders.
The numbers game must be considered as well in the consideration of crash recorder Installations. The actual number of accidents that would be available for analysis would be a marked attenuation from the total number of crash recorder installations (Figure 3). Assume that recorders were installed in 100,000 automobiles. No more than 1 in 4 of these automobiles would be involved in any sort of accident annually. This reduces the number of accident cases with crash recorder information to no more than 25,000. If it is further assumed that the accidents of principal interest are those of more than minor severity, for example, tow-away accidents (approximately 12.5% of all accidents), then only 3125 accidents would be available. If we examined only the highest volume model of the major American manufacturer (approximately 25%) the number of accidents available would be approximately 781. Further division of these accidents into accident type, direction of impact, etc., would further diminish the numbers. This severe attenuation would be greatly increased for car make and models other than the one with the greatest penetration of the market.

It is recognized that the crash recorder is designed to provide crucially important information on impact environment that has not been otherwise available, at least in quantities with acceptable accuracy. However, there is now available another method, as discussed below, for obtaining this information with accuracies that appear excellent. Both methods should be compared in staged crash tests and considered for some possible joint use as mutually reinforcing data sources. However, the computer aided system, with its outputs of a detailed scene description and an accurate reconstruction of the accident, offers the most promise, as a fundamental element of a continuing data gathering system.
ANNUAL CRASH RECORDER INSTALLATIONS 100%

VEHICLES INVOLVED IN ANY ACCIDENT 25%

VEHICLES INVOLVED IN SEVERITIES > TOW AWAY 3.125%

MAJOR MANUFACTURERS HIGHEST VOLUME MODEL .078%

Figure 3 CRASH RECORDER EQUIPPED AUTOMOBILES IN ACCIDENTS
With support from NHTSA, this on-scene accident investigation and reconstruction system has been developed and demonstrated (Figure 4). An automated range-finder transit with associated computer hardware and readout (Figure 5) provides a drawing of the accident scene and supplemental accident information as required (Figure 6). These physical evidence data are transmitted via a radio-telephone link to a centrally located computer which returns a reconstruction of the accident (Figure 7).

In actual reconstructions of staged accidents, this investigator's tool has faithfully reproduced the accident sequence with impact speed and speed change reconstructions of 2-3% accuracy. With this system, police investigation teams can generate high quality accident data in the course of performing their normal police functions. Yet the system has been found, during field trials by police personnel, to actually ease the tasks of scene measurement and reporting. Thus, both the users of accident data and the police can benefit from adoption of this system.

The economics of adopting the system would be extremely attractive from the viewpoint of elimination of labor costs in the generation and reporting of accident data for research purposes. The end product is already in digital format for statistical analysis.

The nature of the output from the van also lends itself directly to a central data bank or regional data banks receiving reconstructed accidents and supplementary data over existing telephone lines. This continuous updating of current data is particularly attractive. At present, the best a state can do, those few that can supply merged accident tapes, is provide a year's data six-eight months after year's end. A dedicated data collection center, such as presently sponsored by NHTSA, can provide computer tape updates of collected, augmented police reported data every three months with a three month delay.
Figure 5 VAN INTERIOR
FIGURE 6 SCENE AND ACCIDENT RECONSTRUCTION
GRAPHIC DISPLAY OF OUTPUTS OF ACCIDENT RECONSTRUCTION

COLLISION AND TRAJECTORY

AXIS INTERVALS ARE 10 FEET

<table>
<thead>
<tr>
<th>VEHICLE 1</th>
<th>VEHICLE 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>1.9</td>
<td>6.0</td>
</tr>
<tr>
<td>10.3</td>
<td>-63.5</td>
</tr>
<tr>
<td>94.6</td>
<td></td>
</tr>
</tbody>
</table>

RECONSTRUCTED POSITIONS AND VELOCITIES AT IMPACT

DISPLAYED FINAL POSITIONS

VEHICLE RECONSTRUCTED POSITIONS AND VELOCITIES AT IMPACT

<table>
<thead>
<tr>
<th>VEHICLE</th>
<th>XCI</th>
<th>YCI</th>
<th>PSII</th>
<th>FWD</th>
<th>LATERAL</th>
<th>ANGULAR</th>
<th>XCI1</th>
<th>YCI1</th>
<th>PSII1</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FT.</td>
<td>FT.</td>
<td>DEG.</td>
<td>MPM</td>
<td>MPM</td>
<td>DEG/SEC</td>
<td>FT.</td>
<td>FT.</td>
<td>DEG.</td>
<td></td>
</tr>
<tr>
<td>VEHICLE 1</td>
<td>1.9</td>
<td>6.0</td>
<td>-0.0</td>
<td>24.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10.3</td>
<td>-63.5</td>
<td>-94.6</td>
<td>IN MOTION AT 3.5 SEC AFTER INITIAL CONTACT</td>
</tr>
<tr>
<td>VEHICLE 2</td>
<td>10.0</td>
<td>16.8</td>
<td>-90.0</td>
<td>36.8</td>
<td>0.0</td>
<td>0.0</td>
<td>28.8</td>
<td>-13.2</td>
<td>-3.4</td>
<td>VEHICLE AT REST</td>
</tr>
</tbody>
</table>

VEHICLE DAMAGE INDICES

<table>
<thead>
<tr>
<th>DAMAGE INDICES</th>
<th>A/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 R Y E W 4</td>
<td>20.8</td>
</tr>
<tr>
<td>04 RZ E W 3</td>
<td>10.2</td>
</tr>
<tr>
<td>09 L P E W 3</td>
<td>14.9</td>
</tr>
<tr>
<td>6.9</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 7 SAMPLE ACCIDENT RECONSTRUCTION
Data Collection System

The mobile accident van will be ready for general police use after some additional field trials. The accident reconstruction computer model (SMAC), as incorporated in the van reconstruction software and hardware, has been distributed and is in extensive use; additional validation, for a variety of accident situations is planned. The total system works and works very well. It is appropriate to consider how it might be incorporated in a complete data collection system that would provide greatly improved and accurate accident data with the quantity and content required for surveillance of standard’s effects on accident consequences.

Strategically located data centers have been suggested for the collection of regional data samples of the multilevel type. An appropriate distribution of accident vans for use by police investigators within each of these regions would provide continuous data into regional data banks and/or to a single data bank.

There are two primary options for van configurations. Police investigators can be equipped with either a Scene Van or a Reconstruction Van. The Scene Van would provide a description of the physical evidence and supplementary accident data (Figure 6). Hard copies of this information in appropriate format would be available as the police report. In addition, all data would go on tape cassettes to be forwarded to the particular data center for reconstruction of the accident by the SMAC model. The reconstructed accident information would supply the center’s data bank. Appropriate retrieval and analysis programs would provide immediate analyses as required.
Reconstruction Vans, with either self-contained reconstruction capability (more comprehensive on-board computing equipment) or radio link to a regional time-share computer or computers would by-pass the step of accident reconstructions at the data center. Also, a more desirable feedback to the accident investigator at the scene would be available. (A successfully reconstructed accident is the best check of the completeness and accuracy of the scene data.) Each reconstructed accident data set would be stored (short term) within the van and transmitted, when convenient, to the data center at available terminal locations (already present at police agencies).

A rough approximation of the cost for two assumed data collection systems is given in Figure 8. These are given to provide an approximate range of system costs for collection of 100,000 cases annually. The cost of a radio link reconstruction van system would be somewhat less than the self-contained van with a resulting overall cost close to that of the scene van system. Final selection among these alternatives should consider, in addition to basic costs, operational factors including the advantages of program updating and modifications with either the Scene Van or the radio-link Reconstruction Van and the overall data improvement that would result from the Reconstruction Van.

Regardless of the system selected, costs per case of less than $100 are estimated. This appears to be quite a bargain. The system would provide 100,000 cases per year for whatever investigation criteria is desired, e.g., tow away cases. Costs per case are essentially independent of data sample size. The assumed rate of cases per van per year is conservative, considering that police agencies operate 24 hours per day.
<table>
<thead>
<tr>
<th></th>
<th>Scene Vans</th>
<th>Reconstruction Vans</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 VANS</td>
<td>$2,500*</td>
<td>$3,750*</td>
</tr>
<tr>
<td>5 Reconstruction Units</td>
<td>0*</td>
<td></td>
</tr>
<tr>
<td>Service, Maintenance</td>
<td>500</td>
<td>750</td>
</tr>
<tr>
<td>Accident Reconstruction Labor</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>$3,210</td>
<td>$4,500</td>
</tr>
<tr>
<td>Cost per Case 100,000 Cases, 200/year/van</td>
<td>$32</td>
<td>$45</td>
</tr>
</tbody>
</table>

*Assumes 10 year useful life with linear depreciation

Figure 8 Approximate, first-order costs accident van data collection system
Obviously missing from the estimates of Figure 8 are labor costs for data acquisition at the scene. It is assumed that police would do the investigations. With police use of vans for their own investigative purposes with improved efficiencies over the present, acceptance of the vans should be readily realized.

Based upon our experience to date, we believe the usefulness of this mobile system to the police themselves can be demonstrated and there is no concern that they cannot properly operate the equipment. Implementation of a total collection system employing this scene data gathering capability will provide NHTSA with the information needed.
APPENDIX J

MASS ACCIDENT DATA ACQUISITION
AND WHY IT’S NEEDED

John Versace
FORD MOTOR COMPANY

January 16, 1975
Accident data have been collected for a long time, and we have learned a great deal from them. These data aid in establishing safety need and proper priority of effort. Government, industry, and the public can benefit from more knowledge regarding the real world of traffic. However, times change and designs change, and we believe the present rate of gathering accident information on current designs and events is not adequate. Large amounts of data, carefully collected so as to assure representativeness, are needed. In addition, special kinds of data, more accurate than numerous, perhaps, are also needed to fill in some significant research lacks.

Approaches to Data Collection

There are three basic approaches to data programs, with some variations. First, the researcher might incisively phrase the particular questions that are going to be asked of the data, and he would design a data collection program to answer those questions. A point of particular significance in this approach is that the data collection program is then part of an integrated research project. For example, both the MVMA and NHTSA have, during the past year, been conducting a study to measure the accident performance of the 1974 interlock type of restraint in comparison to the 1973 system. The number of items of data collected in each case were deliberately kept few so that investigative resources could be allocated toward getting as many cases as possible -- instead of much data on fewer cases.

With additions, January 22, 1975.
The second type of approach would be to run the study like a controlled experiment, in which the hardware to be evaluated would be assigned to members of the public in such a way that there would be both broad representativeness of use and freedom from bias, those not receiving the device being the control group. This approach is seldom practical, although manufacturers sometimes are able to equip certain cars with experimental features prior to their full market introduction in order to develop field experience with them. Again, the data collection is integrated into the research project.

The third approach to data collection -- and the one I believe we are concerned with here -- is to create a data file which is a microcosm, in all its particulars, of the real world. This approach is independent of any particular research project; its purpose is for the data file to "become" the real world insofar as any researcher is concerned. Different researchers will dip into that data file to answer questions which may arise as issues emerge, issues perhaps unforeseen by those who devised the data collection scheme. Such a method requires highly detailed recording of data on an enormous number of variables. This allows for variables previously disregarded to now be investigated, and also allows the researcher to control confounding effects by selecting for comparison only those cases in which the effect of the extraneous variables cancels out. The most desirable kind of data collection approach, providing sufficient resources can be brought to it, is this third type. If resources are not sufficient, then probably the first type of approach -- in which the data program is tailored for the specific questions to be asked of it -- would be most appropriate.

Uses for Data

Among the uses for accident data -- and each use has its own requirement on scope and precision -- are: (i) evaluating the safety performance of
past and current safety designs, and most importantly, verifying that required countermeasures have, in fact, been effective; (ii) determining if particular safety problems are of such magnitude that countermeasures are needed and supporting the specifics of rulemaking; and (iii) supplying normative information about accident occurrence so the future effect of countermeasures not yet designed or produced can be anticipated and a wise policy regarding them be instituted.

In regard to this last point -- anticipating future performance -- let's consider an example. It is easy to conclude that if the 30-mpg crash test requirement contributes to reducing death and injury, then surely an increase to 40, 50, perhaps even 60 mph would be proportionately better. But there is very little information available that would unequivocally support such a conclusion. Because there obviously are no cars on the road meeting such advanced requirements, we cannot test this conclusion by comparing their casualty rate to cars meeting only the 30 mph criterion -- assuming we had accident data collection and analysis procedures adequate to the task. Because there are no such cars, resort must be made to calculation.

Two things are needed to make such calculations: real inputs of population exposure -- drawn from accident data -- and theoretical system models. Validity of the models will of course be an important matter to consider.

Need for Population Exposure Data

Being able to determine whether, or in what way, to increase the test requirements of crash performance standards, or to inaugurate any rule, depends upon our being able to predict the probable effect of such actions in the future. Particularly lacking as an input to any calculation of future effects, is an accurate estimate of the dynamic environment to which people are exposed.
The particular form of the exposure variable most useful for calculating the magnitude of need and in estimating the future effects is the probability distribution of collision speed (with all types of likely obstacles.)

Ordinary accident investigation data can be useful in estimating crash speeds, given some care in adjusting for the mechanical nature of the struck object. However, derived speed estimates from accident reports quickly lose reliability as impacts other than head-on are considered. The ogival cumulative distribution of barrier-equivalent speed has been a prominent part of most analyses aimed at estimating population exposure and hence need, and in calculating the probable effectiveness of different restraints. A single shape and location of this curve has not been accepted among all its users. The absence of this one item of information on occupant exposure can make what should be a factual matter rather a matter of contentious advocacy. It is our belief that a crash recorder supplement to a general accident data program has the potential to assist in clarifying this particular area of need.

Accuracy of Crash Severity Data

For a successful program of crash severity determination, there must also be the right protocol for defining an accident so that the resulting distribution of measurements is not biased upwards by deliberately selecting only "interesting" cases -- an unfortunate characteristic of most data sets available today. If the speed distribution is incorrectly displaced upscale, or inflated due to errors of measurement, there will appear to be many more high speed crashes than really occur; the result will be to lean toward excessively high crash requirements, with resulting cost-effectiveness being less than it appears. While precision of measurement of crash speed is important in estimating the speed distribution, it is even more important that there be no bias in the data collected.
It may be useful here to distinguish between the accuracy of measurement and the accuracy of estimation, in the statistical sense. The former refers to the degree of correctness in any one reading, and the average measurement error is an index of this quality. Accuracy of estimation, for data analysis purposes, refers to the relative absence of bias in the sample of data: i.e., that the sample values fairly reflect the population from which they were drawn: that the sample distribution can be accepted as an estimate of the population distribution because there are no funnies in it which warp it, or skew it, or displace it except for the action of random influences.

Different data purposes place different requirements on measurement accuracy. Crash recorder data presumably are more accurate than other indices of collision severity, such as the measured vehicle deformation or the Vehicle Damage Index (VDI). Whether such accuracy is required depends on the type of study. For many purposes, plan view photographs of the case and struck vehicle would be a significant improvement over VDI, as they would allow for an energy-derived calculation of severity.

When comparing injury outcome between accident cases with, as compared to without, a side guard beam, for example, we would want to control for collision severity because the degree of injury is correlated with collision severity. The control could be effected either mathematically or by partitioning the sample of cases in groups of equal collision severity. Controlling on collision severity will do two things: increase the efficiency of the comparison and eliminate the bias that results from fortuitous concentration of milder collision cases among one or another of the groups under comparison.

Because the degree of injury depends on many factors other than impact severity --such as restraint use, occupant age, and adventitious
posture -- the correlation of injury with the collision severity control variable is necessarily going to be less than perfect. As a result, increases in the precision of measurement of collision severity will not proportionally improve the efficiency of making the comparison when using it as a control variable. So, it is not so important to have high precision when doing routine accident comparison studies. The crash recorder has a different utility, and its evaluation should be based on other considerations.

Crash Recorder Use

A crash recorder will have utility for at least three types of studies. The first, as already mentioned above, is to provide correct normative information about such things as -- and particularly for correctly establishing -- the occupant exposure in terms of the probability distribution of collision speeds. To make such a determination requires a research project to be defined with this as its objective; the project could be based on the crash recorder as a particular tool of unusual usefulness. The research project could terminate when the determination has been made. Since the accuracy provided by the crash recorder is not essential for the kind of data-adjusting purposes described in the paragraph above -- i.e., in order to provide a control variable for accident case comparisons -- it would not be needed as a permanent part of a national data collection program. It should be viewed primarily as a research tool used for fairly particular purposes in a particular research program, more than an instrument for general accident investigation.

Another use for the crash recorder would be in research programs for establishing human tolerance to impact and to aid in establishing dynamic specifications for impact test devices. Thus, crash recorder data could be used as inputs in the programming of experimental crash tests or computer-simulated tests. These studies would determine the design characteristics needed in the test devices (e.g., crash dummies) so they would yield test results...
readings comparable to those experienced by actual accident victims. This kind of research requires data that are in dynamic physical form -- not rating scale indexes or qualitative descriptions. This usage of crash recorders would be contained within a research program designed to that end, and except for considerations of administrative efficiency, not be an intrinsic part of the national accident data collection system.

Still another useful purpose for the crash recorder would be to calibrate or to improve the more subjectively determined indexes which are now commonly used in accident investigation. Again, once that calibration has been effected, there would be no on-going necessity for the crash recorder.

Other Data Needs

There are two other areas of safety evaluation to which there has been inadequate attention. The first is to measure the overlapping and interactive effect of different safety requirements: e.g., strength of door fixtures and occupant restraints. Some safety evaluations, carried out in different studies, can count the same persons as being saved more than once by different means in each study, so that the total of the saved casualties might even exceed the population at risk. Our own studies have had this problem.

But even more significant is the almost total lack of information regarding the safety benefit in the 100-series federal standards. The whole concept of accident causation and avoidance needs to be clarified: to date it has been expressed more figuratively than in quantitative terms which will relate to vehicle design. Lack of good ideas in this area suggests that a conceptual breakthrough must be made before we are able to properly attribute that part of causation/reduction to the vehicle and its design, separate from the mediating influence of the driver and of the roadway, and so cost-
effective countermeasures can be imposed at the right place in the system for each aspect of accident causation, and in such a way -- and this is crucial -- that the specific effect can be evaluated, both prospectively and retrospectively, in accident data.

Procedures for establishing the safety effectiveness of both the current and proposed 100-series standards should be a major research challenge to the government and industry in the years to come. Current government accident avoidance research emphasis is to experimentally compare different vehicles on arbitrary control tasks. But programs of a different type are also needed, programs that will define measures of accident avoidance performance and then from that establish minimum criterion levels for performance, but the kind of performance that can be validated by accident statistics in the long run. For example, the effectiveness of existing braking and handling capability has not been definitely established in a real world context, much less the need for any changes. This is admittedly a difficult area in which to do research; there are very difficult conceptual problems. It is here, especially, that an interdisciplinary approach is needed.

Need for Greater Quantity of Data

Over the years, the Safety Administration has done an admirable job of developing in-depth studies (referred to as multidisciplinary accident investigations) of limited numbers of accidents, providing some information on how effectively certain designs may be functioning in specific instances. On the other hand, these special studies have not adequately revealed from a national viewpoint safety effectiveness on a representative basis. Thus, the accident teams which are employed for these in-depth studies can usually give a reasonably accurate description of any one accident -- and sometimes its causes or at least the causes of the injuries -- but they are not satisfying
our current pressing need for a comprehensive estimate of the nationwide accident picture.

A detailed and highly precise description of any one accident cannot by itself reveal where the overall priorities lie. There are three reasons why accident data must be collected in great quantity: First, there is considerable variability in the injury resulting from accidents that are, on the surface, similar; second, some accident features are quite infrequent and thus comparisons are often based on so little data they are unreliable; and third, we have to account for so many factors which can affect the outcome of each accident.

The first of these reasons -- variability in injury among similar accidents -- is seen when some people can get out of a total wreck and walk away with only minor injuries while in other crashes people sometimes die even though the car is so little damaged it can be driven away. A great number of crashes must be examined so that the entire range of injuries in any one type of crash can be accounted for.

Secondly, certain events are relatively rare because most accidents are of comparatively low intensity and the injuries are of correspondingly low grade. It has been common to combine the counts of severely injured cases with the counts of fatalities in order to get a large enough total count to allow reliable comparisons to be made. Furthermore, some factors of interest -- such as restraints -- have had a relatively low rate of usage so not many cases have been available for investigation. It was only until B. J. Campbell, at North Carolina, was able to examine a few hundred thousand cases that he could find enough applicable ones to reliably detect the profound effect of the lap belt on the fatality rate -- as distinguished from its effect on the rate of severe injury or the rate of combined severe-plus-fatality. The base
fatality rate is quite a bit less than one percent; he found an overall 70 percent reduction in that rate in the lap-belted cases.

The third reason for needing a lot of data is the presence of numerous variables which affect the accident. The art of doing research and arriving at findings and conclusions about any aspect of accident or injury prevention is still fairly experimental. It is experimental because we do not have unequivocal, established scientific methods to cope with the present accident data. The reason for this is most of it fails to satisfy the basic requirements of analysis: that comparisons be made on an "all else equal" basis. By "all else equal" I mean that conclusions about the effectiveness of, say, the side guard beam must be made on data from crashes involving the same kind of vehicles in the same kind of trajectory with the same kind of people at risk, etc. However, given the diversity of vehicle models, it takes a lot of accident chasing to find enough crashes of the same type, of the same severity, and with the same type of vehicles and drivers, etc. -- that is, in which all else is equal. Mathematical adjustment of the data can take care of some confounding of variables in the data, but to be confident a considerable degree of representativeness in the original data is still needed.

Not the least consideration for achieving the proper representativeness of data is that there should be standardized definitions and protocols used by all the investigating agencies. Since a future investigator will query the data file as a microcosm of the universe of accidents, it would be most disagreeable that cases which are essentially similar were described in the same file differently only because the data were collected by different agencies using their own interpretations.
Need for Scientific Sampling

Not only is an increased quantity of data required but the sampling of the accident universe must be by sophisticated protocol. The last of the three reasons given above implies the need for a disciplined approach to the data, to avoid ending up with data which are biased in the factors underlying them. That requires a scientific approach to data collection, not just pouring more dollars into it and cranking up the administrative machine to get a bigger program going but doing it in the same old way. Data gathering programs must be designed by the same people as will design the analyses that will be applied to the data. No less expertise than the Census Bureau applies, or the Gallup Poll, will suffice. Fortunately, NHTSA has been bringing in very competent people of late, people who know that a data collection scheme must be designed from the start with the method of analysis of the resulting data a key determiner of how the data should be gathered.

It is the Government Who Should Collect Data

Mass accident data acquisition, processing, analysis, and broad scale distribution requires great effort and much resource. Only the federal government has the necessary resource and easy access to the agencies which can supply information. Furthermore, it seems that it is the responsibility of the federal government to assemble data which will allow an accurate public review of the real dimensions of the crash and injury problem on our highways.

We appreciate the difficulty of developing and implementing a large scale, comprehensive plan for the acquisition of detailed data on motor vehicle related injuries and fatalities. We are aware that the Safety Administration has over the past several years developed and implemented a portion of such a plan which is related to fatalities. This effort has resulted in what is known
as the "Fatality Analysis File." We believe that data from most of the 50 states is going into that file and are hopeful that all interested parties will have access to that file in order that we all may comprehend the true and detailed dimensions of the fatality problem in the United States.

The Safety Administration has also requested funds for a large scale field survey of automobile accidents in which crash recorders would be employed. The data from this program is equally important to that from the Fatality Analysis File and would provide an accurate determination of the crash speeds at which the several levels of injury and fatality occur and can be employed as a basis for defining the performance levels needed in crashworthiness standards. We support a crash recorder program.

Certain fundamental questions cannot be answered without first having an adequate base of public data: What do we really know about the need for increased performance -- increased performance on the types of test criteria in the rules -- based on what is happening out there on the highway? What will be the effect on injury at lower speed levels when systems designed for a high speed compliance test are used? What are the proper speed levels to target for? While accident data are important, they are of course insufficient in themselves; other questions must still be considered: Can we mass produce these cars to provide such protection at reasonable cost? Should we approach an increased performance level in one massive jump or would we be better served to work toward it incrementally? What lead times are required to achieve these goals? These are obvious questions that should be considered before such rules are proposed.

In summary, we believe it is necessary to greatly expand accident data collection, in a well-disciplined scientifically devised program. Crash recorders cannot supplant an accident investigation program. Crash recorders will
be most useful in research projects whose ends specifically require the
dynamics information which only such a tool can provide rather than in general
data collection programs. There is a great challenge to undertake new studies
of need in the accident avoidance area; indeed, new concepts, of pragmatic
utility and based on what is actually happening on the roads, are needed in
order to get a grasp on the whole issue of vehicle control and its relation
to accidents. It is the government which has the responsibility and the re-
sources for carrying out such programs.
APPENDIX K

POSITION STATEMENT
ON AN
EXAMINED. LOW-COST NATIONAL ACCIDENT DATA COLLECTION PROGRAM

J.R. Cromack
B.J. Campbell
L. Patrick
B. O’Neill

February 7, 1975
PRESENT STATEMENT
ON
AN EXPANDED, LOW-COST NATIONAL ACCIDENT DATA COLLECTION PROGRAM
February 7, 1975

J. Robert Cromack, Southwest Research Institute; B. J. Campbell, Highway Safety Research Center, University of North Carolina; Lawrence Patrick, Wayne State University; Brian O'Neill, Insurance Institute for Highway Safety.

Present real-world accident data have some deficiencies and limitations for both researchers and policymakers. Despite these limitations, much progress has been made on the basis of these data and useful information will continue to be obtained from these sources. However, much can and should be done to improve real-world accident data.

One major contribution would be the development of a large scale accident data base, possibly modeled on the data base developed at the Highway Safety Research Center of the University of North Carolina. This would require the upgrading of police accident reporting in a number of states and combining the data into a single base that could be assessed both by researchers and policymakers. Ideally, real-world accident data in such a base should include a measure, or measures, of both crash and injury severity.

At the present time the only available measure of crash severity is obtainable from the vehicle deformation or crush appropriately defined in relation to the manner of damage. Crash severities derived from vehicle deformation or crush can, however, only be compared among vehicles of the same make and model. It is possible that future research will enable the grouping of similar types and styles of vehicles with respect to crash...
severities so derived, but at present there are no strong objective data to support such comparisons. Additional controlled laboratory type experimentation is needed to verify crash severity measures obtained from vehicle deformation or crash.

Meanwhile there are additional descriptors of real-world accidents that could be valuable to both researchers and policymakers. Crash recorders could provide such additional data. It seems likely that sophisticated recorders will continue to be too expensive to be deployed in the very large numbers needed to substantially augment present real-world data. Serious efforts should be devoted towards the development and large scale deployment of very inexpensive crash recorders that are designed to record a small number of Parameters that can be related to the severity of the crash.

The present measures of injury severity obtained from police accident reports are far from satisfactory and considerable efforts should also be devoted to upgrading these measures. Ideally, injuries should be classified either by the Abbreviated Injury Scale and its derivatives such as the Injury Severity Score or other appropriate injury scales.

A better understanding of the nature and effect of traffic accidents can result from an expanded low Cost, well planned National Accident Data Collection program. The increased availability of data so derived will provide a higher confidence in the results derived from analysis of these data. It should be a major goal of such an effort to investigate the correlation between injury and damage, a topic presently not addressed due to inadequate data, but one that promises significant clarification to the problem of injury causation.
February 7, 1975

Mr. Howard P. Gates, Jr.
Economics and Science Planning
1200 - 18th Street, NW
Washington, D. C. 20036

Dear Mr. Gates:

Enclosed is the approximate consensus of the persons working on the assigned Issue No. 2. In the interest of time, I am sending you this document without final approval from each of the members. They will, however, receive copies of this letter and should they object too strenuously to any of the final changes or corrections, I feel certain you will hear from them.

In all fairness to them, I must state that I added the last paragraph based on my own convictions. It probably represents (at least in general) their views but this is the major divergence from the last draft position statement that was circulated. Incidentally, Larry Patrick did not have an opportunity to comment on the position statement after making several original contributions at our meeting on January 17.

None of the participants indicated an intention to take a position on Federal funding or inducements. Again, it was a pleasure to work with you and the other individuals at the workshop. I look forward to future meetings.

Sincerely,

J. Robert Cromack, Manager
Vehicle Safety Section
Department of Special Projects
Automotive Research Division

JRC:mr
Enclosure
cc: Lawrence Patrick
B. J. Campbell
Brian O'Neill
Present real-world accident data have some deficiencies and limitations for both researchers and policymakers. Despite these limitations, much progress has been made on the basis of these data and useful information will continue to be obtained from these sources. However, much can and should be done to improve real-world accident data.

One major contribution would be the development of a large scale accident data base, possibly modeled on the data base developed at the Highway Safety Research Center of the University of North Carolina. This would require the upgrading of police accident reporting in a number of states and combining the data into a single base that could be assessed both by researchers and policymakers. Ideally, real-world accident data in such a base should include a measure, or measures, of both crash and injury severity.

At the present time the only available measure of crash severity is obtainable from the vehicle deformation or crush appropriately defined in relation to the manner of damage. Crash severities derived from vehicle deformation or crush can, however, only be compared among vehicles of the same make and model. It is possible that future research will enable the grouping of similar types and styles of vehicles with respect to crash severities so derived, but at present there are no strong objective data to support such comparisons. Additional controlled laboratory type experimentation is needed to verify crash severity measures obtained from vehicle deformation or crush.

Meanwhile there are additional descriptors of real-world accidents that could be valuable to both researchers and policymakers. Crash recorders could provide such additional data. It seems likely that sophisticated recorders will continue to be too expensive to be deployed in the very large numbers needed to substantially augment present real-world data. Serious efforts should be devoted towards the development and large scale deployment of very inexpensive crash recorders that are designed to record a small number of parameters that can be related to the severity of the crash.

The present measures of injury severity obtained from police accident reports are far from satisfactory and considerable efforts should also be devoted to upgrading these measures. Ideally, injuries should be classified either by the Abbreviated Injury Scale and its derivatives such as the Injury Severity Score or other appropriate injury scales.
A better understanding of the nature and effect of traffic accidents can result from an expanded low cost, well planned National Accident Data Collection program. The increased availability of data so derived will provide a higher confidence in the results derived from analysis of these data. It should be a major goal of such an effort to investigate the correlation between injury and damage, a topic presently not addressed due to inadequate data, but one that promises significant clarification to the problem of injury causation.
APPENDIX L

RESOLUTION
OF
THE NATIONAL MOTOR VEHICLE SAFETY ADVISORY COUNCIL

November 14, 1974
A Resolution of the
National Motor Vehicle Safety Advisory Council
(A body advisory to the Secretary of Transportation)
November 14, 1974

Whereas, analysis of the cost/benefits of revising standard 208 to require passive restraints has produced limited field evidence of the life saving value of passive restraints, including air bags; and

Whereas, the analysis indicates that mathematical projection and tests with dummies do not predict with sufficient accuracy the potential value of these restraints in actual use; and

Whereas, there is likelihood that indignation over installation of passive restraints may eventually result in public pressure for the removal of such restraints after huge investment is made in them, as in the case of the seat belt interlock; and

Whereas, the mandated addition of yet another costly feature to new automobiles would be a financial hardship to the American consumer who must depend on automobiles for transportation; therefore be it

RESOLVED, that this Council recommends that the Secretary make a concerted effort to come to an agreement with industry on a plan that would result in increased passive restraint usage on the road and defer a call for rulemaking with respect to passive restraints until such time as further actual experience with them on the highways proves that they will reduce deaths and injuries.
APPENDIX M

THE NEED FOR STANDARDIZATION
IN REPORTING COLLISION DAMAGE AND INJURY
IN TRAFFIC ACCIDENTS

J. Robert Cromack

January 16 & 17, 1975
THE NEED FOR STANDARDIZATION IN REPORTING COLLISION DAMAGE AND INJURY
IN TRAFFIC ACCIDENTS

Presented by J. Robert Cromack at the Collision Data Workshop Conference,
Rosslyn (Arlington) Virginia, January 16 and 17, 1975.

The importance of collecting accurate and meaningful accident data
can be measured only in terms of the need for or benefits derived from
what we learn from analyses of these data. If the data are selected from
an atypical sample of the general population, then the conclusions we draw
from studying them are applicable only to the sample. Similarly, if the
data acquired do not entirely satisfy the needs of the study, then once
again we may be unable to draw appropriate conclusions. For example,
questions concerning injury causation cannot be answered when injury re-
ports are stratified simply according to the categories "probably not injured,"
"probably injured," or "killed."

Conclusions evolved from such studies may lead us to make inappropri-
ate recommendations or formulate invalid regulations. Unfortunately, except for
certain specialized studies in which data were specifically gathered for the
purpose, most data derived from State and local police records now compiled
in the major accident data files, have many of these deficiencies of incomple-
teness, inaccuracy, and lack of coordination of elements of interest.

How, then can we avoid these snares and delusions. How, for example,
can crash induced injuries in the field be reliably compared with laboratory
simulated injuries to cadavers and animals if the field injury data are
either poorly documented or entirely lacking. I don't mean to imply that
there are not some good data collected in the field, but unfortunately, there
are generally not enough good current data collected to be statistically use-
ful. The answer, of course, is to collect more and better data.

One most important area of interest to all of us who have been working
to reduce injury severity in accidents is the relationship of vehicle
impact intensity to resulting injury to occupants. Right now mass accident data are collected almost entirely by the policeman called to the scene of the accident. Summaries of these police data tell us that there were X number of accidents, Y number of injuries, Z fatalities—they say that: so many accidents happened at night, on a rural road, that was under construction, and that the vehicle was towed from the scene by Alvarado’s Wrecker Service—all very interesting, but what kind of a picture do these elements of intelligence give us of the accident severity. In fact, do they provide any measure or measures of accident severity.

I believe that two very important measures of the severity of an accident are: the extent of personal injury and vehicle damage. Injury and damage can be quantified and when these quantifications are combined specifically with other routine information normally collected at the police investigation level, a vast array of useful information can be evolved.

While various scales, indices and methods have been used to quantify occupant injury and vehicle damage, the two most versatile and, in my opinion, valuable, are the Abbreviated Injury Scale (1) (for injury quantification) and the Vehicle Deformation Index (2) (for vehicle damage specification).

The Abbreviated Injury Scale, or AIS as it is often referred to, is a method developed by the American Medical Association to describe personal injury. Numerical injury codes are applied to specific trauma in specific anatomical regions; for example, a compound fracture of the left humerus might rate an AIS Level 3. The increasing numbers from zero to six indicate increasing severity of the specific lesion. These codes were developed by physicians who considered such factors as: energy dissipation as a cause of the trauma, threat to life resulting from the trauma, possibility of permanent impairment, the treatment period required for healing, and the incidence of such injuries occurring in the routine treatment of trauma.
from routine traffic accidents as based on the experience of the attending physicians. The AIS codes are assigned only by medical and para-medical personnel.

Vehicle damage is quantified using the Vehicle Deformation Index, called the VDI, developed by the Society of Automotive Engineers. The VDI is a comprehensive damage description technique in which a six component, seven character alphanumeric code is used to describe: the general direction of force, general area of deformation, specific horizontal and vertical areas of damage, the type of damage distribution, and the extent of damage. A VDI code of 12FCEN2 indicates that the vehicle ran head-on into a narrow object, such as pole, causing central damage to the front of the vehicle and the contact damage extended back approximately one-third the length of the hood.

Use of the Vehicle Deformation Index by a diverse group of investigators with only minimal training, was shown to be feasible in a study of 520 accident cases collected by 33 teams representing nine European and North American nations in the Pilot Study on Road Safety (3,4). In this controlled study, accident investigators correctly applied the VDI to damaged vehicles in approximately three-fourths of the cases. Less than 5% of the cases contained invalid information. The authors of the report concluded that the VDI could be applied effectively at the police level 90 to 95% of the time in regular use. (5)

The damage and injury scales were studied further in a special program in Bexar County, Texas, during the six-month period ending May 30, 1973. The automated data file from this study contains information on nearly 5500 accidents involving over 10,000 vehicles and 15,000 occupants. The correlation between injury severity and vehicle damage was studied and gross patterns were evident when the two variables were compared on selected basis. (6,7)
With reasonable assurance, injury severity could be predicted on the basis of observed damage extent. I hasten to add, however, that this statement must be accepted in view of many other qualifying factors. Gross statistics were reported because we simply did not have a data file of sufficient size to produce statistically significant results in any degree of refinement.

A recommendation of this study, which I now propose for consideration of this group is: using now obtainable larger quantities of accident data, conduct further studies aimed at refining the injury severity prediction potential of the VDI collision damage classification technique used in conjunction with the Abbreviated Injury Scale; promulgate the Vehicle Deformation Index as the standard collision damage classification tool for use by police in reporting vehicle damage in traffic accidents; introduce programs which would permit utilization of the Abbreviated Injury Scale (assigned only by medical and para-medical personnel) in connection with police reports in major trauma treatment centers.
APPENDIX N

REGULATORY RULEMAKING
BASED ON LESS THAN TOTAL INFORMATION

David Morganstein
CENTER FOR AUTO SAFETY
and
L.A. Goldnuntz
ECONOMICS & SCIENCE PLANNING, INC.

February 21, 1975
(date of receipt)
REGULATORY RULEMAKING
BASED ON LESS THAN TOTAL INFORMATION

David Morganstein, Center for Auto Safety,
and L. A. Goldmuntz, Economics & Science Planning, Inc.

Received February 21, 1975

Estimation of the costs and benefits expected from regulatory programs is complicated by a lack of precise information. Several areas where a lack of knowledge exist are: the methods to be used by those regulated to meet the requirements; the efficacy of the methods chosen; the details which enter into the pricing effort of changes brought about by the regulation; alterations in the initial conditions which may occur over time, causing unpredictable variations in costs or benefits; the effectiveness of the regulation in achieving the desired benefits; and the impacts the regulation might have in other areas.

One subject not frequently addressed is the variation of the process to be regulated. If a population characteristic is time-varying, the potential benefits may be similarly varying. In such a situation, the possible conflicting conclusions that might be arrived at must be considered. There are well known tools, such as decision theory, which may provide a better conclusion than some undefined subjective process. Thus, the cost, the need or the value of additional data collection can be evaluated in light of its potential for clarifying the issues.

Nevertheless, governmental expectations are sufficiently high and the public demand sufficiently intense that programs may proceed even though complete information is unavailable or unattainable. After programs have been in place for some period, improvements
may be realized more slowly than initial expectations. Ensuing
discussions are polarized around industry and the regulatory
agency: Is industry using unnecessarily expensive methods, and
not choosing methods most likely to meet the intent of the
regulation? Or on the other hand, are bureaucrats acting to
enlarge their domain or justify their existence as a regulator?
Or is there a lack of communication between industry, the
regulators and the public so that there is little understanding
of the issues and therefore little progress in resolving them?

Advocates may reference controlled laboratory experiments to
estimate the efficacy of a regulation. They argue that the learn-
ing process will improve the methods used to meet the intent of the
regulation and lower costs. Cynics question the extent to which
laboratory experiments represent the real world. When cynics argue
that the introduction of a new technology has a price tag which
will ultimately be paid by the public, the advocates counter that
the withholding of such technology has its own price tag. Clearly,
there are societal costs to be borne without the protection of the
regulation, with inadequate regulation or with excessive regulation.
These issues have no general answers but require analysis case by
case at each stage of the development of the regulation.

Analyses of the complex issues can best be carried out by a
number of independent professional sources working independently.
These efforts should then be compared, and the analyses and reasons
for proceeding or not proceeding with a suggested program should be
subject to public scrutiny. The consumer is potentially victimized
when information is in the hands of any one monolithic organization,
be it a regulatory agency or an industry. The consumer may also tend
to be victimized by oversimplified sensationalized commentary by
either side to the debate.
The consumer has to rely on the different perspectives within society to accomplish the various analyses that expose the issues. We believe this pluralism can then lead to modifications of various points of view and perhaps lead to an eventual crystallization of the issues in a form that can be more readily understood by the public. At this point, it is essentially a public or political decision as to whether to proceed or not to proceed with any given regulatory program. The public interest is served best by having the issues fully explored from many points of view by many independent sources in estimating the potential costs and benefits of proposed regulatory programs.
APPENDIX 0

AUTOMOBILE COLLISION DATA WORKSHOP:
AGENDA
SCHEDULED PRESENTATIONS
SALIENT RESIDUAL ISSUES

January 16 & 17, 1975
TENTATIVE AGENDA

AUTOMOBILE COLLISION DATA WORKSHOP

Part I. Data Requirements.

(a) Collision data needed for the design of crashworthy passenger cars including the restraint system, and to permit compliance testing; kinds of information, their relative importance, and precision required.

(b) Collision data needed for rational regulatory rulemaking; kinds and amounts of information, priorities, precision.

(c) Adequacy of the existing collision data base and the utility of data being gathered by current methods.

(d) Statistical requirements: rate at which data should be gathered to be timely in the environment of a temporally-varying car-design population; the data file size to assure statistical significance when divided into cells of interest; time to accrue the required data file as a function of sampling rate; statistical adequacy of current and proposed programs.

(e) Dollar-equivalent benefits of adequate data; costs of not having data or using incorrect data.

Part II. Data Gathering Techniques and Programs.

(f) Crash recorders: capabilities, costs and limitations of alternative designs and programs.

(g) Accident reporting: extent, accuracy, costs and limitations; potential and cost of improving reporting accuracy.

(h) utility, cost and limitations of computer crash simulation.
Derivation of crash data statistics through correlation of laboratory crashes with real world experience; clinical investigations; adequacy, accuracy, cost and limitations of these approaches.

Part III. Public, Legal and Legislative Reactions.

The potential impact of crash recorders on tort claim settlement.

The reaction of public interest groups to alternate collision-data-gathering programs.

The legislative history of collision data gathering proposals and programs.
SCHEDULED PRESENTATIONS

AUTOMOBILE COLLISION DATA WORKSHOP

January 16, 1975

DATA REQUIREMENTS

"Mass Accident Data Acquisition and Why It’s Needed”,
John Versace, Ford Motor Company

"Inadequacy of Accident Data to Conduct Meaningful Research”,
Robert Cromack, Southwest Research Institute

"Need for Better Crash Data”,
Brian O’Neill, Insurance Institute for Highway Safety

"Collision Data Required to Improve and Evaluate Safety”,
Lawrence Patrick, Wayne State University

"How Data Fits Into the Rulemaking Process”,

"Adequacy and Limitations of Current Data”,

DATA GATHERING TECHNIQUES AND PROGRAMS

"A Discussion of Data Gathering Systems”,
Edwin Kidd, Calspan Corporation

"How to Make Crash Recorders Support Other Data Collection Programs”
B. J. Campbell, Highway Safety Research Center, U. of N. C.

"Crash Recorders: A Solution Seeking A Problem?”

"NHTSA Crash Recorders”,
Lynn Bradford, National Highway Traffic Safety Administration

"Automotive Tape Recorder”
Charles Conlon, AVCO Systems Division

"All Solid State Triaxial Accelerometer for Crash Testing”,
Louis Roberts, Transportation Systems Center
A number of major issues surfaced at the January 16, 1975 Automobile Collision Data Workshop. The following people have agreed to write brief position papers on these issues and to forward them to Economics & Science Planning, Inc., before February 1, 1975:

ISSUE 1

Estimate the potential societal cost of not having better accident data than available from current resources.

From the point of view of the automobile manufacturer:
(Working separately)

- John Versace, Ford Motor Co.
- Richard Wilson, General Motors Corp.

From the point of view of the regulator:

- James Hofferberth, NHTSA

ISSUE 2

What are the advantages of an expanded low cost national accident data collection program that might provide 600,000 to a million reports per year? How would such a data program be organized? Are there any models for such a data program? What Federal funding or inducements would be appropriate to achieve it?

(Working together)

- Brian O'Neill, Insurance Institute for Highway Safety
- Lawrence Patrick, Wayne State University
- B. J. Campbell, Highway Safety Research Center
- Robert Cromack, Southwest Research Institute
ISSUES TO BE CONSIDERED BY THE
OFFICE OF TECHNOLOGY ASSESSMENT
IN ITS RESPONSE TO THE HOUSE
APPROPRIATIONS COMMITTEE ARE
THE FOLLOWING:

1. How much has NHTSA spent in each of the past three years to
gather accident data? Is that data sufficient, or is
further data on the characteristics of automobile collisions
necessary for effective NHTSA standards-setting? If the
existing data base is inadequate; in what ways is it inadequate?

2. An evaluation of the type of data being produced by existing
crash recorders and an explanation of how this data is being
used by NHTSA should be conducted.

3. If the data base is inadequate, how might an adequate data
base be obtained and what are the consequences associated
with obtaining the data in different ways (including the
possibility of not obtaining the necessary data)? The cost
effectiveness of the crash recorder and the crash impact
approaches proposed by NHTSA should be examined.

4. Secondary consequences of implementing these or other
programs should be identified and evaluated. Examples of
these secondary consequences include legal questions
associated with the existence of actual physical data from
an accident and the potential value (to driver training
programs) of a knowledge base concerning how drivers actually
respond in accident situations. For each type of approach
investigated, the implementation costs to the Federal
Government, industry and consumers should be identified.
ISSUE 3

Define the role of crash recorders in capturing field data needed to evaluate and calibrate accident investigators reports, crash tests, and crash simulation.

* Gene Mannella, NHTSA

* James O’Day, Highway Safety Research Institute, University of Michigan

* Edwin Kidd, Calspan Corporation

ISSUE 4

what is the statistical rationale for the number of recorders proposed for procurement and installation by NHTSA? Is the number appropriate to the calibration uses described in 3 above? injury and fatality prevention rulemaking? damageability rulemaking or assessment?

* Gene Mannella, NHTSA

* Don Mela, NHTSA

ISSUE 5

Reliable data is sometimes unavailable to the extent desired when a regulatory action may seem to some to be desirable. What general policy guidelines if any can be developed to guide regulatory actions in an environment of imperfect data.

* David Morganstein, Center for Auto Safety

* Lawrence Goldmuntz, Economics and Science Planning
LETTER FROM JOHN GARRETT
CALSPAN CORPORATION
AND
ATTACHMENT

March 12, 1975
Dr. Lawrence Goldmuntz
Economics and Science Planning
1200 18th Street, N.W.
Washington, D.C. 20036

Dear Dr. Goldmuntz:

Following our telephone conversation about two weeks ago, I gathered some material on our use of police photography for estimation of vehicle damage severity and/or speed, as I had agreed. The material is attached to this letter. To provide background, and some additional detail, I have summarized relevant information below.

We first became concerned with the problem of assessing accident severity in our Automotive Crash Injury Research (ACIR) program in the early to mid-1950's. At that time, we developed an accident Severity Index (Attachment A) based on damage to the vehicle. The police provided interior and exterior photographs of the accident vehicle but the ratings were made by a small staff of trained Calspan (then Cornell) personnel. This procedure tended to minimize the inter-coder variability that would have resulted if thousands of police had rated the accidents. Also, it was not necessary to train police to code, but only to take the proper photographs. Thus, training costs were kept low.

Accuracy of ratings were further assured through the use of fairly extensive computer edit procedures. "Illegal" (impossible) codes resulted in a case being returned for checking. Consistency checks also were used, i.e., a case that was rated minor could not have severe overall damage to the car elsewhere or any damage to basic structure such as the chassis. Low probability events that were inconsistent with the severity also required a recheck of the case. Thus, a fatality in a case where the severity rating for the vehicle was minor, warranted a check. Some corrections were made automatically, but many errors required a recheck.

The reliability of rating procedures also was checked periodically by ACIR to ensure that rater variability was kept to a minimum. A copy of one report on this subject (Attachment B) is enclosed.
Bob Campbell later developed the TAD scale which is used by police in North Carolina and several other states. Here, all ratings are made by police in the field. Bob’s studies have shown that they do rather well, but I think that I would prefer the additional control which our system provides.

The Collision Deformation Code (CDC) developed by G.M. generally succeeded the earlier systems for use by many researchers and the in-depth teams. In some ways this always seemed odd to me since the in-depth teams had measurements of the actual vehicle damage which were more accurate than the CDC. This scale clearly is too complicated for police use in the field. However, we have compared CDC ratings obtained by our personnel from police photographs with those obtained by an experienced investigator rating the CDC from actual inspection and measurement of the vehicle. The results were quite good (Attachment C, pages 37-56) and we would have confidence in ratings provided by such a system. Again, ratings were made by a small staff of Calspan personnel with appropriate checks to maintain accuracy.

We later summarized available data from Calspan crash tests in a first attempt to develop an aid for estimating speed from vehicle damage (Attachment D). The amount of useful data was limited and the approach was dropped when additional inputs were not forthcoming.

Development of the SMAC program by Ray McHenry permitted accurate estimates of impact speeds, but requires such information as vehicle damage, point of impact and vehicle rest positions. Use of the Calvan simplifies the collection procedure for police and ensures accuracy. Ray is now working on a simplified version of the START program for SMAC which, it appears, may provide reasonably accurate speed estimates. A brief description appears in Attachment E.

Data collection cost was another point that we discussed. The cost of our most recent program to collect police photographs (last year) was approximately $5,000 for 1,200 cases. Costs include only purchase and processing of film. We have purchased relatively inexpensive Instamatic cameras ($20-25) for police use, with good results. Generally, one camera per car is needed.

In our discussion, you also mentioned the possible use of templates for measuring the vehicle damage photographed. We explored this, but it is quite difficult to do without an overhead shot of the vehicle or the use of photogrammetry. If we go that far, then I believe that the Calvan would be competitive in terms of cost and would provide far better data.
Dr. Lawrence Goldmuntz
March 12, 1975

This has become a rather lengthy letter with many attachments, but since I agree that the use of police photographs can provide good vehicle damage/speed data, I have tried to provide what useful information I can. It may still be sketchy for your purposes, however. If so, I will be pleased to provide any additional information that we have available.

Sincerely,

John W. Garrett, Head
Accident Research Branch
Transportation Safety Department

JWG:jem
Attachments
ACIR INDEX OF ACCIDENT SEVERITY AND POTENTIAL SURVIVABILITY

Introduction

The method of rating accident severity described here was developed for use in the Automotive Crash Injury Research program (ACIR) of Cornell Aeronautical Laboratory, Inc. Thus far, 31 states have participated in the program. In this study, accident data are reported by participating state police on a report form designed by ACIR. Police also provide photographs of the vehicle interior and exterior. Medical data are provided by the physicians who attend the injured victims.

The description of the rating system which follows was prepared for use by ACIR case analysts. In assessing vehicle damage, photographs of the car and pertinent information from the accident report form are used. The report form provides information concerning damage to various structural elements of the car, such as the chassis frame, engine or mounts, firewall, floor, etc., which are not always visible in photographs. This information is essential if an accurate appraisal of vehicle damage is to be made.

Although the ACIR accident data have been collected by thousands of police officers throughout the country, rating of accident severity and survivability has been performed by a few ACIR case analysts. Thus, variability in rating can be minimized and closer control maintained over the process.

Discussion of Rating Method

The rating of accident severity and survivability represents an effort to classify accident-involved cars not only in terms of damage but in terms of the potential survival of occupants. Each car in an accident is evaluated and rated individually since severity and potential survivability often differ even for cars involved in the same accident. Data on which the evaluation is based are obtained from a series of interior and exterior photographs of the car, and from the accident report form which describes the accident and provides additional information on certain structural components: engine, engine mounts, chassis frame, firewall, front wheels, floor, etc. Accident severity and survivability are rated only when adequate photographs and sufficient accident information are available. When adequate photographs or accident data are not available, cases are classed as NAC (not able to classify).

The classification of accident severity and survivability requires an assessment of the type and amount of car damage, type of components affected, and the influence of this damage on potential survival of car occu-
pants. Accident severity and survivability are rated semi-independently although in fact they are inextricably related. Broadly speaking, accident severity is classified in terms of the type, extent and area (side, rear, etc.) of the car damaged, whereas survivability is classified in terms of occupant environment, i.e., whether there is collapse or invasion of the

In classifying accident severity a six-point scale (below) ranging from minor to extreme is used. In descriptive terms, damage ranges from denting and scratching of surface metal to complete disintegration or crushing of the car. Thus, the accident severity rating rises progressively as damage increases and more of the structural elements of the car are affected.

Accident Severity and Survivability Scale

<table>
<thead>
<tr>
<th>Car Damage</th>
<th>Accident Severity</th>
<th>Survivability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet Metal Damage</td>
<td>Minor</td>
<td>Survivable</td>
</tr>
<tr>
<td>No damage to basic structure; no invasion of compartment.</td>
<td>Mode rate</td>
<td>Survivable</td>
</tr>
<tr>
<td>Structural elements progressively involved; compartment may, or may not, be invaded.</td>
<td>Moderately Severe</td>
<td>Survivable, Questionable or Partial</td>
</tr>
<tr>
<td>Complete Destruction</td>
<td>Severe</td>
<td>Survivable, Questionable, or Partial</td>
</tr>
<tr>
<td></td>
<td>Extremely Severe"</td>
<td>Survivable, Partial, or Non-Survivable</td>
</tr>
<tr>
<td></td>
<td>Extreme</td>
<td>Non-Survivable</td>
</tr>
</tbody>
</table>
When an accident is rated minor or mode rate in severity it is considered survivable. Moderately severe, severe or extreme 1 y severe accidents may also be survivable, or survivability may be rated as questionable or partial. Extremely severe accidents may also be classified as non-survivable. Extreme accidents are always regarded as non-survivable because they involve almost complete destruction of the car. A more detailed description of both accident severity and survivability is provided in the sections which follow.

Accident Severity

0 Minor

Damage is most often confined to the sheet metal surface of the car although bumpers may be slightly dented, headlights or taillights broken, radiator grill bent or broken, ornamental molding torn free. When forces are applied to sheet metal, damage may be described in such terms as "small dent", "slight deformation", scratches", etc. Such damage is considered minor whether a small or large area of the car is affected. Minor severity accidents never involve structural components of the car.

1 Mode rate

Damage most often involves sheet metal, but such structures as bumpers, bumper guards, or radiator grill may be damaged. Sheet metal or grill damage may be described as "slight buckling", "pushed in' "crumpled", or "torn". For stronger components -- such as a steel bumper -- descriptive phrases such as "large dent", "twisted", or "bent" might be used. In accidents of mode rate severity, structural components of the car are undamaged.

1 Moderately Severe

Damage involves forces sufficiently great so that stronger structural elements as well as sheet metal are affected. Usually sheet metal begins to collapse and, depending on the area of impact, corner posts, center posts, or chassis frame may be deformed.

1 Severe

Damage in this category always involves collapse or marked displacement of structural elements, as well as crushing or telescoping of sheet metal. This grade of accident severity often involves penetration of compartment are as 'either as a result of direct impact, or as a result of displacement of other parts of the car due to impact or overturn.
- Extremely Severe

Damage to the impacted area in these accidents is very extensive. Structural elements and sheet metal in the affected areas are generally crushed. There is considerable telescoping of the impacted area, and there is usually some invasion or collapse of the compartment.

- Extreme

This category is reserved for accidents so severe that the automobile involved is almost completely demolished, and often is scarcely recognizable as an automobile. Damage may be described as almost complete disintegration or crushing of the entire car. Photographs of extreme damage are not provided in the figure illustrating accident severity because all damage beyond that illustrated for extremely severe is considered extreme.

Survivability

The concept of survivability is based on the assumption that survival is dependent on the compartment area remaining essentially intact. In rating survivability, it is recognized that other forms of protection -- interior redesign, padding, lap belt and harness, or even other devices as yet not available -- may be required in order to fully capitalize on the potential survivability afforded by the compartment. Without a reasonably intact environment, however, there is no assurance that occupants could survive even with other protective devices. The criteria used in determining survivability, therefore, are the degree of compartment collapse and its influence on the normal seated position areas, i.e., whether there would be sufficient space for survival if all seats had been occupied by persons seated in a normal, upright position, and all occupants had remained in their seats. In brief, whether the area surrounding each seat in the car could still hold an upright occupant.

Data concerning the actual fate of automobile occupants indicate that many occupants die in accidents that are relatively mild and, conversely, some occupants survive even when the car is demolished. Although all cars in the ACIR study contain at least one occupant, in classifying survivability the presence or absence of occupants, as well as the fate of those occupants actually present in the car, is ignored. In effect, the car is rated without considering the number of occupants or whether they lived or died. Thus, occupants may survive a non-survivable accident, or may die in a survivable accident.

A "survivable" rating signifies that the compartment (occupant area) was essentially intact and that there was no crushing or invasion of the compartment. As the compartment area collapses or is progressively invaded by surrounding structure, survivability may be classified as survivable, questionable, partial, or non-survivable. Survivability categories and the appropriate accident severity categories are described below.
- **Survivable**

When there is little or no invasion of the compartment area, survivability for all occupant areas is normally assumed. Minor and moderate accident severities, by definition, must be considered survivable. Moderately severe, severe, and extremely severe accidents may be survivable if there is little invasion of the compartment. An extreme accident (again, by definition) cannot be considered survivable. (Rated survivable: Front photographs - minor, moderate, moderately severe; Side - minor, moderate, moderately severe, severe; Rollover - minor, moderate, moderately severe.)

- **Questionable Survivability**

When the area surrounding one or more seated positions is somewhat compressed, but there is some doubt as to whether one or more normally seated persons could survive, survivability is considered questionable. This classification may be used only with moderately severe, severe, and extremely severe accidents. (Rated questionable survivability: Side photograph - severe; Rear - extremely severe; Rollover - severe.)

- **Partially Survivable**

This category is used when one or more, but not all) seated positions are compressed to such a degree that it is considered non-survivable for a normally seated person. This classification may be used only with moderately severe, severe, and extremely severe accidents. (Rated partially survivable: Side photograph - extremely severe.)

- **Non-Survivable**

When the entire compartment is compressed or invaded to such an extent that there is insufficient room for an occupant seated upright in all the normal seating areas, the accident is considered non-survivable. Extremely severe accidents may be classified as non-survivable, and extreme accidents must be so classified. (Rated non-survivable: Front photograph - extremely severe; Rollover - extremely severe.)
<table>
<thead>
<tr>
<th>Classification</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survivable</td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>1</td>
</tr>
<tr>
<td>Moderate</td>
<td>2</td>
</tr>
<tr>
<td>Moderately severe</td>
<td>3</td>
</tr>
<tr>
<td>Severe</td>
<td>4</td>
</tr>
<tr>
<td>Extremely severe</td>
<td>5</td>
</tr>
<tr>
<td>Non-survivable</td>
<td></td>
</tr>
<tr>
<td>Extremely severe</td>
<td>E</td>
</tr>
<tr>
<td>Extreme</td>
<td>F</td>
</tr>
<tr>
<td>Partially survivable</td>
<td></td>
</tr>
<tr>
<td>Moderately severe</td>
<td>L</td>
</tr>
<tr>
<td>Severe</td>
<td>M</td>
</tr>
<tr>
<td>Extremely severe</td>
<td>N</td>
</tr>
<tr>
<td>Questionable survivability</td>
<td></td>
</tr>
<tr>
<td>Moderately severe</td>
<td>T</td>
</tr>
<tr>
<td>Severe</td>
<td>U</td>
</tr>
<tr>
<td>Extremely severe</td>
<td>V</td>
</tr>
<tr>
<td>Not Able to Classify</td>
<td>X</td>
</tr>
</tbody>
</table>